Produces the average pool of the input tensor for quantized types.
tf.compat.v1.nn.quantized_avg_pool(
input: _atypes.TensorFuzzingAnnotation[TV_QuantizedAvgPool_T],
min_input: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
max_input: _atypes.TensorFuzzingAnnotation[_atypes.Float32],
ksize,
strides,
padding: str,
name=None
)
Args |
input
|
A Tensor . Must be one of the following types: qint8 , quint8 , qint32 , qint16 , quint16 .
4-D with shape [batch, height, width, channels] .
|
min_input
|
A Tensor of type float32 .
The float value that the lowest quantized input value represents.
|
max_input
|
A Tensor of type float32 .
The float value that the highest quantized input value represents.
|
ksize
|
A list of ints .
The size of the window for each dimension of the input tensor.
The length must be 4 to match the number of dimensions of the input.
|
strides
|
A list of ints .
The stride of the sliding window for each dimension of the input
tensor. The length must be 4 to match the number of dimensions of the input.
|
padding
|
A string from: "SAME", "VALID" .
The type of padding algorithm to use.
|
name
|
A name for the operation (optional).
|
Returns |
A tuple of Tensor objects (output, min_output, max_output).
|
output
|
A Tensor . Has the same type as input .
|
min_output
|
A Tensor of type float32 .
|
max_output
|
A Tensor of type float32 .
|