tf.keras.initializers.Zeros
Stay organized with collections
Save and categorize content based on your preferences.
Initializer that generates tensors initialized to 0.
Inherits From: Initializer
Also available via the shortcut function tf.keras.initializers.zeros
.
Examples:
# Standalone usage:
initializer = tf.keras.initializers.Zeros()
values = initializer(shape=(2, 2))
# Usage in a Keras layer:
initializer = tf.keras.initializers.Zeros()
layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
Args |
config
|
A Python dictionary, the output of get_config() .
|
Returns |
An Initializer instance.
|
get_config
View source
get_config()
Returns the initializer's configuration as a JSON-serializable dict.
Returns |
A JSON-serializable Python dict.
|
__call__
View source
__call__(
shape, dtype=None, **kwargs
)
Returns a tensor object initialized as specified by the initializer.
Args |
shape
|
Shape of the tensor.
|
dtype
|
Optional dtype of the tensor. Only numeric or boolean dtypes
are supported. If not specified, keras.backend.floatx() is
used, which defaults to float32 unless you configured it
otherwise (via keras.backend.set_floatx(float_dtype) ).
|
**kwargs
|
Additional keyword arguments.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.keras.initializers.Zeros\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.14.0/keras/initializers/initializers.py#L132-L171) |\n\nInitializer that generates tensors initialized to 0.\n\nInherits From: [`Initializer`](../../../tf/keras/initializers/Initializer)\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.initializers.Zeros`](https://www.tensorflow.org/api_docs/python/tf/keras/initializers/Zeros), [`tf.initializers.zeros`](https://www.tensorflow.org/api_docs/python/tf/keras/initializers/Zeros), [`tf.keras.initializers.zeros`](https://www.tensorflow.org/api_docs/python/tf/keras/initializers/Zeros)\n\n\u003cbr /\u003e\n\nAlso available via the shortcut function [`tf.keras.initializers.zeros`](../../../tf/keras/initializers/Zeros).\n\n#### Examples:\n\n # Standalone usage:\n initializer = tf.keras.initializers.Zeros()\n values = initializer(shape=(2, 2))\n\n # Usage in a Keras layer:\n initializer = tf.keras.initializers.Zeros()\n layer = tf.keras.layers.Dense(3, kernel_initializer=initializer)\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/keras-team/keras/tree/v2.14.0/keras/initializers/initializers.py#L96-L115) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates an initializer from a configuration dictionary.\n\n#### Example:\n\n initializer = RandomUniform(-1, 1)\n config = initializer.get_config()\n initializer = RandomUniform.from_config(config)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|----------------------------------------------------|\n| `config` | A Python dictionary, the output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| An `Initializer` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/keras-team/keras/tree/v2.14.0/keras/initializers/initializers.py#L88-L94) \n\n get_config()\n\nReturns the initializer's configuration as a JSON-serializable dict.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A JSON-serializable Python dict. ||\n\n\u003cbr /\u003e\n\n### `__call__`\n\n[View source](https://github.com/keras-team/keras/tree/v2.14.0/keras/initializers/initializers.py#L149-L171) \n\n __call__(\n shape, dtype=None, **kwargs\n )\n\nReturns a tensor object initialized as specified by the initializer.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `shape` | Shape of the tensor. |\n| `dtype` | Optional dtype of the tensor. Only numeric or boolean dtypes are supported. If not specified, [`keras.backend.floatx()`](../../../tf/keras/backend/floatx) is used, which defaults to `float32` unless you configured it otherwise (via [`keras.backend.set_floatx(float_dtype)`](../../../tf/keras/backend/set_floatx)). |\n| `**kwargs` | Additional keyword arguments. |\n\n\u003cbr /\u003e"]]