tf.math.greater
Stay organized with collections
Save and categorize content based on your preferences.
Returns the truth value of (x > y) element-wise.
tf.math.greater(
x: _atypes.TensorFuzzingAnnotation[TV_Greater_T],
y: _atypes.TensorFuzzingAnnotation[TV_Greater_T],
name=None
) -> _atypes.TensorFuzzingAnnotation[_atypes.Bool]
Example:
x = tf.constant([5, 4, 6])
y = tf.constant([5, 2, 5])
tf.math.greater(x, y) ==> [False, True, True]
x = tf.constant([5, 4, 6])
y = tf.constant([5])
tf.math.greater(x, y) ==> [False, False, True]
Args |
x
|
A Tensor . Must be one of the following types: float32 , float64 , int32 , uint8 , int16 , int8 , int64 , bfloat16 , uint16 , half , uint32 , uint64 .
|
y
|
A Tensor . Must have the same type as x .
|
name
|
A name for the operation (optional).
|
Returns |
A Tensor of type bool .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.math.greater\n\n\u003cbr /\u003e\n\nReturns the truth value of (x \\\u003e y) element-wise.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.greater`](https://www.tensorflow.org/api_docs/python/tf/math/greater)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.greater`](https://www.tensorflow.org/api_docs/python/tf/math/greater), [`tf.compat.v1.math.greater`](https://www.tensorflow.org/api_docs/python/tf/math/greater)\n\n\u003cbr /\u003e\n\n tf.math.greater(\n x: _atypes.TensorFuzzingAnnotation[TV_Greater_T],\n y: _atypes.TensorFuzzingAnnotation[TV_Greater_T],\n name=None\n ) -\u003e _atypes.TensorFuzzingAnnotation[_atypes.Bool]\n\n| **Note:** [`math.greater`](../../tf/math/greater) supports broadcasting. More about broadcasting [here](http://docs.scipy.org/doc/numpy/user/basics.broadcasting.html)\n\n#### Example:\n\n x = tf.constant([5, 4, 6])\n y = tf.constant([5, 2, 5])\n tf.math.greater(x, y) ==\u003e [False, True, True]\n\n x = tf.constant([5, 4, 6])\n y = tf.constant([5])\n tf.math.greater(x, y) ==\u003e [False, False, True]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `x` | A `Tensor`. Must be one of the following types: `float32`, `float64`, `int32`, `uint8`, `int16`, `int8`, `int64`, `bfloat16`, `uint16`, `half`, `uint32`, `uint64`. |\n| `y` | A `Tensor`. Must have the same type as `x`. |\n| `name` | A name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor` of type `bool`. ||\n\n\u003cbr /\u003e"]]