tfp.experimental.auto_batching.instructions.interpret
Stay organized with collections
Save and categorize content based on your preferences.
Interprets a program in this instruction language and returns the result.
tfp.experimental.auto_batching.instructions.interpret(
program, *inputs
)
This is a definitional interpreter; its purpose is to define the
semantics of the instruction language. As such, it does no
auto-batching, and generally strives to be as simple as possible.
It also does not stage graph computations, so will only work in
Eager mode TensorFlow.
Args |
program
|
The Program tuple to interpret.
|
*inputs
|
Values to pass to the program. The length of inputs must be
the same as the length of program.vars_in .
|
Returns |
results
|
A tuple of results, which are the values of the variables listed
in program.out_vars at termination.
|
Raises |
ValueError
|
If an internal invariant is violated, or an error is
detected in the program being interpreted.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2023-11-21 UTC.
[null,null,["Last updated 2023-11-21 UTC."],[],[],null,["# tfp.experimental.auto_batching.instructions.interpret\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/tensorflow/probability/blob/v0.23.0/tensorflow_probability/python/experimental/auto_batching/instructions.py#L1119-L1194) |\n\nInterprets a program in this instruction language and returns the result.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tfp.experimental.auto_batching.frontend.instructions.interpret`](https://www.tensorflow.org/probability/api_docs/python/tfp/experimental/auto_batching/instructions/interpret), [`tfp.experimental.auto_batching.frontend.st.inst.interpret`](https://www.tensorflow.org/probability/api_docs/python/tfp/experimental/auto_batching/instructions/interpret), [`tfp.experimental.auto_batching.frontend.stack.inst.interpret`](https://www.tensorflow.org/probability/api_docs/python/tfp/experimental/auto_batching/instructions/interpret), [`tfp.experimental.auto_batching.stack_optimization.inst.interpret`](https://www.tensorflow.org/probability/api_docs/python/tfp/experimental/auto_batching/instructions/interpret), [`tfp.experimental.auto_batching.stackless.inst.interpret`](https://www.tensorflow.org/probability/api_docs/python/tfp/experimental/auto_batching/instructions/interpret)\n\n\u003cbr /\u003e\n\n tfp.experimental.auto_batching.instructions.interpret(\n program, *inputs\n )\n\nThis is a definitional interpreter; its purpose is to define the\nsemantics of the instruction language. As such, it does no\nauto-batching, and generally strives to be as simple as possible.\nIt also does not stage graph computations, so will only work in\nEager mode TensorFlow.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-----------|------------------------------------------------------------------------------------------------------------|\n| `program` | The Program tuple to interpret. |\n| `*inputs` | Values to pass to the program. The length of `inputs` must be the same as the length of `program.vars_in`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|-----------|--------------------------------------------------------------------------------------------------------|\n| `results` | A tuple of results, which are the values of the variables listed in `program.out_vars` at termination. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|-------------------------------------------------------------------------------------------------|\n| `ValueError` | If an internal invariant is violated, or an error is detected in the program being interpreted. |\n\n\u003cbr /\u003e"]]