View source on GitHub
  
 | 
Basic affine layer.
Inherits From: Layer
tfp.experimental.nn.Affine(
    input_size,
    output_size,
    kernel_initializer=None,
    bias_initializer=None,
    make_kernel_bias_fn=tfp.experimental.nn.util.make_kernel_bias,
    dtype=tf.float32,
    batch_shape=(),
    activation_fn=None,
    name=None
)
Args | |
|---|---|
input_size
 | 
... | 
output_size
 | 
... | 
kernel_initializer
 | 
...
Default value: None (i.e.,
tfp.experimental.nn.initializers.glorot_uniform()).
 | 
bias_initializer
 | 
...
Default value: None (i.e., tf.initializers.zeros()).
 | 
make_kernel_bias_fn
 | 
...
Default value: tfp.experimental.nn.util.make_kernel_bias.
 | 
dtype
 | 
...
Default value: tf.float32.
 | 
batch_shape
 | 
...
Default value: ().
 | 
activation_fn
 | 
...
Default value: None.
 | 
name
 | 
...
Default value: None (i.e., 'Affine').
 | 
Attributes | |
|---|---|
activation_fn
 | 
|
also_track
 | 
|
bias
 | 
|
dtype
 | 
|
kernel
 | 
|
name
 | 
Returns the name of this module as passed or determined in the ctor. | 
name_scope
 | 
Returns a tf.name_scope instance for this class.
 | 
non_trainable_variables
 | 
Sequence of non-trainable variables owned by this module and its submodules. | 
submodules
 | 
Sequence of all sub-modules.
 Submodules are modules which are properties of this module, or found as properties of modules which are properties of this module (and so on). 
  | 
trainable_variables
 | 
Sequence of trainable variables owned by this module and its submodules. | 
validate_args
 | 
Python bool indicating possibly expensive checks are enabled.
 | 
variables
 | 
Sequence of variables owned by this module and its submodules. | 
Methods
load
load(
    filename
)
save
save(
    filename
)
summary
summary()
with_name_scope
@classmethodwith_name_scope( method )
Decorator to automatically enter the module name scope.
class MyModule(tf.Module):@tf.Module.with_name_scopedef __call__(self, x):if not hasattr(self, 'w'):self.w = tf.Variable(tf.random.normal([x.shape[1], 3]))return tf.matmul(x, self.w)
Using the above module would produce tf.Variables and tf.Tensors whose
names included the module name:
mod = MyModule()mod(tf.ones([1, 2]))<tf.Tensor: shape=(1, 3), dtype=float32, numpy=..., dtype=float32)>mod.w<tf.Variable 'my_module/Variable:0' shape=(2, 3) dtype=float32,numpy=..., dtype=float32)>
| Args | |
|---|---|
method
 | 
The method to wrap. | 
| Returns | |
|---|---|
| The original method wrapped such that it enters the module's name scope. | 
__call__
__call__(
    x
)
Call self as a function.
    View source on GitHub