tf.keras.layers.average
Functional interface to the tf.keras.layers.Average
layer.
tf.keras.layers.average(
inputs, **kwargs
)
Example:
x1 = np.ones((2, 2))
x2 = np.zeros((2, 2))
y = tf.keras.layers.Average()([x1, x2])
y.numpy().tolist()
[[0.5, 0.5], [0.5, 0.5]]
Usage in a functional model:
input1 = tf.keras.layers.Input(shape=(16,))
x1 = tf.keras.layers.Dense(8, activation='relu')(input1)
input2 = tf.keras.layers.Input(shape=(32,))
x2 = tf.keras.layers.Dense(8, activation='relu')(input2)
avg = tf.keras.layers.Average()([x1, x2])
out = tf.keras.layers.Dense(4)(avg)
model = tf.keras.models.Model(inputs=[input1, input2], outputs=out)
Args |
inputs
|
A list of input tensors.
|
**kwargs
|
Standard layer keyword arguments.
|
Returns |
A tensor, the average of the inputs.
|
Raises |
ValueError
|
If there is a shape mismatch between the inputs and the shapes
cannot be broadcasted to match.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
Last updated 2023-10-06 UTC.
[null,null,["Last updated 2023-10-06 UTC."],[],[]]