View source on GitHub
|
Base class for representing distributed values.
tf.distribute.DistributedValues(
values
)
A subclass instance of tf.distribute.DistributedValues is created when
creating variables within a distribution strategy, iterating a
tf.distribute.DistributedDataset or through tf.distribute.Strategy.run.
This base class should never be instantiated directly.
tf.distribute.DistributedValues contains a value per replica. Depending on
the subclass, the values could either be synced on update, synced on demand,
or never synced.
tf.distribute.DistributedValues can be reduced to obtain single value across
replicas, as input into tf.distribute.Strategy.run or the per-replica values
inspected using tf.distribute.Strategy.experimental_local_results.
Example usage:
- Created from a
tf.distribute.DistributedDataset:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])dataset = tf.data.Dataset.from_tensor_slices([5., 6., 7., 8.]).batch(2)dataset_iterator = iter(strategy.experimental_distribute_dataset(dataset))distributed_values = next(dataset_iterator)
- Returned by
run:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])@tf.functiondef run():ctx = tf.distribute.get_replica_context()return ctx.replica_id_in_sync_groupdistributed_values = strategy.run(run)
- As input into
run:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])dataset = tf.data.Dataset.from_tensor_slices([5., 6., 7., 8.]).batch(2)dataset_iterator = iter(strategy.experimental_distribute_dataset(dataset))distributed_values = next(dataset_iterator)@tf.functiondef run(input):return input + 1.0updated_value = strategy.run(run, args=(distributed_values,))
- Reduce value:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])dataset = tf.data.Dataset.from_tensor_slices([5., 6., 7., 8.]).batch(2)dataset_iterator = iter(strategy.experimental_distribute_dataset(dataset))distributed_values = next(dataset_iterator)reduced_value = strategy.reduce(tf.distribute.ReduceOp.SUM,distributed_values,axis = 0)
- Inspect local replica values:
strategy = tf.distribute.MirroredStrategy(["GPU:0", "GPU:1"])dataset = tf.data.Dataset.from_tensor_slices([5., 6., 7., 8.]).batch(2)dataset_iterator = iter(strategy.experimental_distribute_dataset(dataset))per_replica_values = strategy.experimental_local_results(distributed_values)per_replica_values(<tf.Tensor: shape=(1,), dtype=float32, numpy=array([5.], dtype=float32)>,<tf.Tensor: shape=(1,), dtype=float32, numpy=array([6.], dtype=float32)>)
View source on GitHub