View source on GitHub
  
 | 
Masked Autoencoder for Distribution Estimation [Germain et al. (2015)][1].
tfp.substrates.numpy.bijectors.AutoregressiveNetwork(
    params,
    event_shape=None,
    conditional=False,
    conditional_event_shape=None,
    conditional_input_layers='all_layers',
    hidden_units=None,
    input_order='left-to-right',
    hidden_degrees='equal',
    activation=None,
    use_bias=True,
    kernel_initializer='glorot_uniform',
    bias_initializer='zeros',
    kernel_regularizer=None,
    bias_regularizer=None,
    kernel_constraint=None,
    bias_constraint=None,
    validate_args=False,
    **kwargs
)
A AutoregressiveNetwork takes as input a Tensor of shape [..., event_size]
and returns a Tensor of shape [..., event_size, params].
The output satisfies the autoregressive property.  That is, the layer is
configured with some permutation ord of {0, ..., event_size-1} (i.e., an
ordering of the input dimensions), and the output output[batch_idx, i, ...]
for input dimension i depends only on inputs x[batch_idx, j] where
ord(j) < ord(i).  The autoregressive property allows us to use
output[batch_idx, i] to parameterize conditional distributions:
  p(x[batch_idx, i] | x[batch_idx, j] for ord(j) < ord(i))
which give us a tractable distribution over input x[batch_idx]:
  p(x[batch_idx]) = prod_i p(x[batch_idx, ord(i)] | x[batch_idx, ord(0:i)])
For example, when params is 2, the output of the layer can parameterize
the location and log-scale of an autoregressive Gaussian distribution.
Example
The AutoregressiveNetwork can be used to do density estimation as is shown
in the below example:
# Generate data -- as in Figure 1 in [Papamakarios et al. (2017)][2]).
n = 2000
x2 = np.random.randn(n).astype(dtype=np.float32) * 2.
x1 = np.random.randn(n).astype(dtype=np.float32) + (x2 * x2 / 4.)
data = np.stack([x1, x2], axis=-1)
# Density estimation with MADE.
made = tfb.AutoregressiveNetwork(params=2, hidden_units=[10, 10])
distribution = tfd.TransformedDistribution(
    distribution=tfd.Sample(tfd.Normal(loc=0., scale=1.), sample_shape=[2]),
    bijector=tfb.MaskedAutoregressiveFlow(made))
# Construct and fit model.
x_ = tfkl.Input(shape=(2,), dtype=tf.float32)
log_prob_ = distribution.log_prob(x_)
model = tfk.Model(x_, log_prob_)
model.compile(optimizer=tf.optimizers.Adam(),
              loss=lambda _, log_prob: -log_prob)
batch_size = 25
model.fit(x=data,
          y=np.zeros((n, 0), dtype=np.float32),
          batch_size=batch_size,
          epochs=1,
          steps_per_epoch=1,  # Usually `n // batch_size`.
          shuffle=True,
          verbose=True)
# Use the fitted distribution.
distribution.sample((3, 1))
distribution.log_prob(np.ones((3, 2), dtype=np.float32))
The conditional argument can be used to instead build a conditional density
estimator. To do this the conditioning variable must be passed as a kwarg:
# Generate data as the mixture of two distributions.
n = 2000
c = np.r_[
  np.zeros(n//2),
  np.ones(n//2)
]
mean_0, mean_1 = 0, 5
x = np.r_[
  np.random.randn(n//2).astype(dtype=np.float32) + mean_0,
  np.random.randn(n//2).astype(dtype=np.float32) + mean_1
]
# Density estimation with MADE.
made = tfb.AutoregressiveNetwork(
  params=2,
  hidden_units=[2, 2],
  event_shape=(1,),
  conditional=True,
  kernel_initializer=tfk.initializers.VarianceScaling(0.1),
  conditional_event_shape=(1,)
)
distribution = tfd.TransformedDistribution(
  distribution=tfd.Sample(tfd.Normal(loc=0., scale=1.), sample_shape=[1]),
  bijector=tfb.MaskedAutoregressiveFlow(made))
# Construct and fit model.
x_ = tfkl.Input(shape=(1,), dtype=tf.float32)
c_ = tfkl.Input(shape=(1,), dtype=tf.float32)
log_prob_ = distribution.log_prob(
  x_, bijector_kwargs={'conditional_input': c_})
model = tfk.Model([x_, c_], log_prob_)
model.compile(optimizer=tf.optimizers.Adam(learning_rate=0.1),
              loss=lambda _, log_prob: -log_prob)
batch_size = 25
model.fit(x=[x, c],
          y=np.zeros((n, 0), dtype=np.float32),
          batch_size=batch_size,
          epochs=3,
          steps_per_epoch=n // batch_size,
          shuffle=True,
          verbose=True)
# Use the fitted distribution to sample condition on c = 1
n_samples = 1000
cond = 1
samples = distribution.sample(
  (n_samples,),
  bijector_kwargs={'conditional_input': cond * np.ones((n_samples, 1))})
Examples: Handling Rank-2+ Tensors
AutoregressiveNetwork can be used as a building block to achieve different
autoregressive structures over rank-2+ tensors.  For example, suppose we want
to build an autoregressive distribution over images with dimension [weight,
height, channels] with channels = 3:
We can parameterize a 'fully autoregressive' distribution, with cross-channel and within-pixel autoregressivity:
r0 g0 b0 r0 g0 b0 r0 g0 b0 ^ ^ ^ ^ ^ ^ ^ ^ ^ | / ____/ \ | / \____ \ | | /__/ \ | / \__\ | r1 g1 b1 r1 <- g1 b1 r1 g1 <- b1 ^ | \_________/as:
# Generate random images for training data. images = np.random.uniform(size=(100, 8, 8, 3)).astype(np.float32) n, width, height, channels = images.shape # Reshape images to achieve desired autoregressivity. event_shape = [height * width * channels] reshaped_images = tf.reshape(images, [n, event_shape]) # Density estimation with MADE. made = tfb.AutoregressiveNetwork(params=2, event_shape=event_shape, hidden_units=[20, 20], activation='relu') distribution = tfd.TransformedDistribution( distribution=tfd.Sample( tfd.Normal(loc=0., scale=1.), sample_shape=[dims]), bijector=tfb.MaskedAutoregressiveFlow(made)) # Construct and fit model. x_ = tfkl.Input(shape=event_shape, dtype=tf.float32) log_prob_ = distribution.log_prob(x_) model = tfk.Model(x_, log_prob_) model.compile(optimizer=tf.optimizers.Adam(), loss=lambda _, log_prob: -log_prob) batch_size = 10 model.fit(x=data, y=np.zeros((n, 0), dtype=np.float32), batch_size=batch_size, epochs=10, steps_per_epoch=n // batch_size, shuffle=True, verbose=True) # Use the fitted distribution. distribution.sample((3, 1)) distribution.log_prob(np.ones((5, 8, 8, 3), dtype=np.float32))We can parameterize a distribution with neither cross-channel nor within-pixel autoregressivity:
r0 g0 b0 ^ ^ ^ | | | | | | r1 g1 b1as:
# Generate fake images. images = np.random.choice([0, 1], size=(100, 8, 8, 3)) n, width, height, channels = images.shape # Reshape images to achieve desired autoregressivity. reshaped_images = np.transpose( np.reshape(images, [n, width * height, channels]), axes=[0, 2, 1]) made = tfb.AutoregressiveNetwork(params=1, event_shape=[width * height], hidden_units=[20, 20], activation='relu') # Density estimation with MADE. # # NOTE: Parameterize an autoregressive distribution over an event_shape of # [channels, width * height], with univariate Bernoulli conditional # distributions. distribution = tfd.Autoregressive( lambda x: tfd.Independent( tfd.Bernoulli(logits=tf.unstack(made(x), axis=-1)[0], dtype=tf.float32), reinterpreted_batch_ndims=2), sample0=tf.zeros([channels, width * height], dtype=tf.float32)) # Construct and fit model. x_ = tfkl.Input(shape=(channels, width * height), dtype=tf.float32) log_prob_ = distribution.log_prob(x_) model = tfk.Model(x_, log_prob_) model.compile(optimizer=tf.optimizers.Adam(), loss=lambda _, log_prob: -log_prob) batch_size = 10 model.fit(x=reshaped_images, y=np.zeros((n, 0), dtype=np.float32), batch_size=batch_size, epochs=10, steps_per_epoch=n // batch_size, shuffle=True, verbose=True) distribution.sample(7) distribution.log_prob(np.ones((4, 8, 8, 3), dtype=np.float32))Note that one set of weights is shared for the mapping for each channel from image to distribution parameters -- i.e., the mapping
layer(reshaped_images[..., channel, :]), wherechannelis 0, 1, or 2.To use separate weights for each channel, we could construct an
AutoregressiveNetworkandTransformedDistributionfor each channel, and combine them with atfd.Blockwisedistribution.
References
[1]: Mathieu Germain, Karol Gregor, Iain Murray, and Hugo Larochelle. MADE: Masked Autoencoder for Distribution Estimation. In International Conference on Machine Learning, 2015. https://arxiv.org/abs/1502.03509
[2]: George Papamakarios, Theo Pavlakou, Iain Murray, Masked Autoregressive Flow for Density Estimation. In Neural Information Processing Systems, 2017. https://arxiv.org/abs/1705.07057
Args | |
|---|---|
params
 | 
Python integer specifying the number of parameters to output per input. | 
event_shape
 | 
Python list-like of positive integers (or a single int),
specifying the shape of the input to this layer, which is also the
event_shape of the distribution parameterized by this layer.  Currently
only rank-1 shapes are supported.  That is, event_shape must be a single
integer.  If not specified, the event shape is inferred when this layer
is first called or built.
 | 
conditional
 | 
Python boolean describing whether to add conditional inputs. | 
conditional_event_shape
 | 
Python list-like of positive integers (or a
single int), specifying the shape of the conditional input to this layer
(without the batch dimensions). This must be specified if conditional
is True.
 | 
conditional_input_layers
 | 
Python str describing how to add conditional
parameters to the autoregressive network. When "all_layers" the
conditional input will be combined with the network at every layer,
whilst "first_layer" combines the conditional input only at the first
layer which is then passed through the network
autoregressively. Default: 'all_layers'.
 | 
hidden_units
 | 
Python list-like of non-negative integers, specifying
the number of units in each hidden layer.
 | 
input_order
 | 
Order of degrees to the input units: 'random',
'left-to-right', 'right-to-left', or an array of an explicit order. For
example, 'left-to-right' builds an autoregressive model:
p(x) = p(x1) p(x2 | x1) ... p(xD | x<D).  Default: 'left-to-right'.
 | 
hidden_degrees
 | 
Method for assigning degrees to the hidden units: 'equal', 'random'. If 'equal', hidden units in each layer are allocated equally (up to a remainder term) to each degree. Default: 'equal'. | 
activation
 | 
An activation function.  See tf.keras.layers.Dense. Default:
None.
 | 
use_bias
 | 
Whether or not the dense layers constructed in this layer
should have a bias term.  See tf.keras.layers.Dense.  Default: True.
 | 
kernel_initializer
 | 
Initializer for the Dense kernel weight
matrices.  Default: 'glorot_uniform'.
 | 
bias_initializer
 | 
Initializer for the Dense bias vectors. Default:
'zeros'.
 | 
kernel_regularizer
 | 
Regularizer function applied to the Dense kernel
weight matrices.  Default: None.
 | 
bias_regularizer
 | 
Regularizer function applied to the Dense bias
weight vectors.  Default: None.
 | 
kernel_constraint
 | 
Constraint function applied to the Dense kernel
weight matrices.  Default: None.
 | 
bias_constraint
 | 
Constraint function applied to the Dense bias
weight vectors.  Default: None.
 | 
validate_args
 | 
Python bool, default False. When True, layer
parameters are checked for validity despite possibly degrading runtime
performance. When False invalid inputs may silently render incorrect
outputs.
 | 
**kwargs
 | 
Additional keyword arguments passed to this layer (but not to
the tf.keras.layer.Dense layers constructed by this layer).
 | 
Attributes | |
|---|---|
event_shape
 | 
|
params
 | 
|
Methods
build
build(
    input_shape
)
See tfkl.Layer.build.
call
call(
    x, conditional_input=None
)
Transforms the inputs and returns the outputs.
Suppose x has shape batch_shape + event_shape and conditional_input
has shape conditional_batch_shape + conditional_event_shape. Then, the
output shape is:
broadcast(batch_shape, conditional_batch_shape) + event_shape + [params].
Also see tfkl.Layer.call for some generic discussion about Layer calling.
| Args | |
|---|---|
x
 | 
A Tensor. Primary input to the layer.
 | 
conditional_input
 | 
A `Tensor. Conditional input to the layer. This is required iff the layer is conditional. | 
| Returns | |
|---|---|
y
 | 
A Tensor. The output of the layer. Note that the leading dimensions
follow broadcasting rules described above.
 | 
compute_output_shape
compute_output_shape(
    input_shape
)
See tfkl.Layer.compute_output_shape.
    View source on GitHub