|  View source on GitHub | 
Bin values into discrete intervals.
tfp.substrates.numpy.stats.find_bins(
    x,
    edges,
    extend_lower_interval=False,
    extend_upper_interval=False,
    dtype=None,
    name=None
)
Given edges = [c0, ..., cK], defining intervals
I_0 = [c0, c1), I_1 = [c1, c2), ..., I_{K-1} = [c_{K-1}, cK],
This function returns bins, such that x[i] lies within I_{bins[i]}.
| Returns | |
|---|---|
| bins | Tensorwith sameshapeasxanddtype.
Has whole number values.bins[i] = kmeans thex[i]falls into thekthbin, ie,edges[bins[i]] <= x[i] < edges[bins[i] + 1]. | 
| Raises | |
|---|---|
| ValueError | If edges.shape[0]is determined to be less than 2. | 
Examples
Cut a 1-D array
x = [0., 5., 6., 10., 20.]
edges = [0., 5., 10.]
tfp.stats.find_bins(x, edges)
==> [0., 1., 1., 1., np.nan]
Cut x into its deciles
x = tf.random.stateless_uniform(shape=(100, 200))
decile_edges = tfp.stats.quantiles(x, num_quantiles=10)
bins = tfp.stats.find_bins(x, edges=decile_edges)
bins.shape
==> (100, 200)
tf.reduce_mean(bins == 0.)
==> approximately 0.1
tf.reduce_mean(bins == 1.)
==> approximately 0.1