View source on GitHub
|
Computes the mean of squares of errors between labels and predictions.
Inherits From: Loss
tf.keras.losses.MeanSquaredError(
reduction=losses_utils.ReductionV2.AUTO,
name='mean_squared_error'
)
loss = square(y_true - y_pred)
Standalone usage:
y_true = [[0., 1.], [0., 0.]]y_pred = [[1., 1.], [1., 0.]]# Using 'auto'/'sum_over_batch_size' reduction type.mse = tf.keras.losses.MeanSquaredError()mse(y_true, y_pred).numpy()0.5
# Calling with 'sample_weight'.mse(y_true, y_pred, sample_weight=[0.7, 0.3]).numpy()0.25
# Using 'sum' reduction type.mse = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.SUM)mse(y_true, y_pred).numpy()1.0
# Using 'none' reduction type.mse = tf.keras.losses.MeanSquaredError(reduction=tf.keras.losses.Reduction.NONE)mse(y_true, y_pred).numpy()array([0.5, 0.5], dtype=float32)
Usage with the compile() API:
model.compile(optimizer='sgd', loss=tf.keras.losses.MeanSquaredError())
Args | |
|---|---|
reduction
|
Type of tf.keras.losses.Reduction to apply to
loss. Default value is AUTO. AUTO indicates that the reduction
option will be determined by the usage context. For almost all cases
this defaults to SUM_OVER_BATCH_SIZE. When used under a
tf.distribute.Strategy, except via Model.compile() and
Model.fit(), using AUTO or SUM_OVER_BATCH_SIZE
will raise an error. Please see this custom training tutorial
for more details.
|
name
|
Optional name for the instance. Defaults to 'mean_squared_error'. |
Methods
from_config
@classmethodfrom_config( config )
Instantiates a Loss from its config (output of get_config()).
| Args | |
|---|---|
config
|
Output of get_config().
|
| Returns | |
|---|---|
A keras.losses.Loss instance.
|
get_config
get_config()
Returns the config dictionary for a Loss instance.
__call__
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss instance.
| Args | |
|---|---|
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN], except
sparse loss functions such as sparse categorical crossentropy where
shape = [batch_size, d0, .. dN-1]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a coefficient for the
loss. If a scalar is provided, then the loss is simply scaled by the
given value. If sample_weight is a tensor of size [batch_size],
then the total loss for each sample of the batch is rescaled by the
corresponding element in the sample_weight vector. If the shape of
sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is
scaled by the corresponding value of sample_weight. (Note
ondN-1: all loss functions reduce by 1 dimension, usually
axis=-1.)
|
| Returns | |
|---|---|
Weighted loss float Tensor. If reduction is NONE, this has
shape [batch_size, d0, .. dN-1]; otherwise, it is scalar. (Note
dN-1 because all loss functions reduce by 1 dimension, usually
axis=-1.)
|
| Raises | |
|---|---|
ValueError
|
If the shape of sample_weight is invalid.
|
View source on GitHub