View source on GitHub
|
Computes the tf.math.minimum of elements across dimensions of a tensor.
tf.math.reduce_min(
input_tensor, axis=None, keepdims=False, name=None
)
This is the reduction operation for the elementwise tf.math.minimum op.
Reduces input_tensor along the dimensions given in axis.
Unless keepdims is true, the rank of the tensor is reduced by 1 for each
of the entries in axis, which must be unique. If keepdims is true, the
reduced dimensions are retained with length 1.
If axis is None, all dimensions are reduced, and a
tensor with a single element is returned.
For example:
a = tf.constant([[[1, 2], [3, 4]],[[1, 2], [3, 4]]])tf.reduce_min(a)<tf.Tensor: shape=(), dtype=int32, numpy=1>
Choosing a specific axis returns minimum element in the given axis:
b = tf.constant([[1, 2, 3], [4, 5, 6]])tf.reduce_min(b, axis=0)<tf.Tensor: shape=(3,), dtype=int32, numpy=array([1, 2, 3], dtype=int32)>tf.reduce_min(b, axis=1)<tf.Tensor: shape=(2,), dtype=int32, numpy=array([1, 4], dtype=int32)>
Setting keepdims to True retains the dimension of input_tensor:
tf.reduce_min(a, keepdims=True)<tf.Tensor: shape=(1, 1, 1), dtype=int32, numpy=array([[[1]]], dtype=int32)>tf.math.reduce_min(a, axis=0, keepdims=True)<tf.Tensor: shape=(1, 2, 2), dtype=int32, numpy=array([[[1, 2],[3, 4]]], dtype=int32)>
Returns | |
|---|---|
| The reduced tensor. |
numpy compatibility
Equivalent to np.min
View source on GitHub