tf.raw_ops.FakeQuantWithMinMaxVarsGradient
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Compute gradients for a FakeQuantWithMinMaxVars operation.
tf.raw_ops.FakeQuantWithMinMaxVarsGradient(
    gradients, inputs, min, max, num_bits=8, narrow_range=False, name=None
)
| Args | 
|---|
| gradients | A Tensorof typefloat32.
Backpropagated gradients above the FakeQuantWithMinMaxVars operation. | 
| inputs | A Tensorof typefloat32.
Values passed as inputs to the FakeQuantWithMinMaxVars operation.
min, max: Quantization interval, scalar floats. | 
| min | A Tensorof typefloat32. | 
| max | A Tensorof typefloat32. | 
| num_bits | An optional int. Defaults to8.
The bitwidth of the quantization; between 2 and 8, inclusive. | 
| narrow_range | An optional bool. Defaults toFalse.
Whether to quantize into 2^num_bits - 1 distinct values. | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A tuple of Tensorobjects (backprops_wrt_input, backprop_wrt_min, backprop_wrt_max). | 
| backprops_wrt_input | A Tensorof typefloat32. | 
| backprop_wrt_min | A Tensorof typefloat32. | 
| backprop_wrt_max | A Tensorof typefloat32. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2023-03-27 UTC.
  
  
  
    
      [null,null,["Last updated 2023-03-27 UTC."],[],[]]