View source on GitHub |
Generates sparse cross from a list of sparse and dense tensors.
tf.sparse.cross(
inputs, name=None, separator=None
)
For example, if the inputs are
* inputs[0]: SparseTensor with shape = [2, 2]
[0, 0]: "a"
[1, 0]: "b"
[1, 1]: "c"
* inputs[1]: SparseTensor with shape = [2, 1]
[0, 0]: "d"
[1, 0]: "e"
* inputs[2]: Tensor [["f"], ["g"]]
then the output will be:
shape = [2, 2]
[0, 0]: "a_X_d_X_f"
[1, 0]: "b_X_e_X_g"
[1, 1]: "c_X_e_X_g"
Customized separator "Y":
inp_0 = tf.constant([['a'], ['b']])
inp_1 = tf.constant([['c'], ['d']])
output = tf.sparse.cross([inp_0, inp_1], separator='_Y_')
output.values
<tf.Tensor: shape=(2,), dtype=string, numpy=array([b'a_Y_c', b'b_Y_d'],
dtype=object)>
Args | |
---|---|
inputs
|
An iterable of Tensor or SparseTensor .
|
name
|
Optional name for the op. |
separator
|
A string added between each string being joined. Defaults to 'X'. |
Returns | |
---|---|
A SparseTensor of type string .
|