|  View source on GitHub | 
Creates a Head for multi class classification. (deprecated)
Inherits From: Head
tf.estimator.MultiClassHead(
    n_classes,
    weight_column=None,
    label_vocabulary=None,
    loss_reduction=tf.losses.Reduction.SUM_OVER_BATCH_SIZE,
    loss_fn=None,
    name=None
)
Uses sparse_softmax_cross_entropy loss.
The head expects logits with shape [D0, D1, ... DN, n_classes].
In many applications, the shape is [batch_size, n_classes].
labels must be a dense Tensor with shape matching logits, namely
[D0, D1, ... DN, 1]. If label_vocabulary given, labels must be a string
Tensor with values from the vocabulary. If label_vocabulary is not given,
labels must be an integer Tensor with values specifying the class index.
If weight_column is specified, weights must be of shape
[D0, D1, ... DN], or [D0, D1, ... DN, 1].
The loss is the weighted sum over the input dimensions. Namely, if the input
labels have shape [batch_size, 1], the loss is the weighted sum over
batch_size.
Also supports custom loss_fn. loss_fn takes (labels, logits) or
(labels, logits, features, loss_reduction) as arguments and returns
unreduced loss with shape [D0, D1, ... DN, 1]. loss_fn must support
integer labels with shape [D0, D1, ... DN, 1]. Namely, the head applies
label_vocabulary to the input labels before passing them to loss_fn.
Usage:
n_classes = 3head = tf.estimator.MultiClassHead(n_classes)logits = np.array(((10, 0, 0), (0, 10, 0),), dtype=np.float32)labels = np.array(((1,), (1,)), dtype=np.int64)features = {'x': np.array(((42,),), dtype=np.int32)}# expected_loss = sum(cross_entropy(labels, logits)) / batch_size# = sum(10, 0) / 2 = 5.loss = head.loss(labels, logits, features=features)print('{:.2f}'.format(loss.numpy()))5.00eval_metrics = head.metrics()updated_metrics = head.update_metrics(eval_metrics, features, logits, labels)for k in sorted(updated_metrics):print('{} : {:.2f}'.format(k, updated_metrics[k].result().numpy()))accuracy : 0.50average_loss : 5.00preds = head.predictions(logits)print(preds['logits'])tf.Tensor([[10. 0. 0.][ 0. 10. 0.]], shape=(2, 3), dtype=float32)
Usage with a canned estimator:
my_head = tf.estimator.MultiClassHead(n_classes=3)
my_estimator = tf.estimator.DNNEstimator(
    head=my_head,
    hidden_units=...,
    feature_columns=...)
It can also be used with a custom model_fn. Example:
def _my_model_fn(features, labels, mode):
  my_head = tf.estimator.MultiClassHead(n_classes=3)
  logits = tf.keras.Model(...)(features)
  return my_head.create_estimator_spec(
      features=features,
      mode=mode,
      labels=labels,
      optimizer=tf.keras.optimizers.Adagrad(lr=0.1),
      logits=logits)
my_estimator = tf.estimator.Estimator(model_fn=_my_model_fn)
| Args | |
|---|---|
| n_classes | Number of classes, must be greater than 2 (for 2 classes, use BinaryClassHead). | 
| weight_column | A string or a NumericColumncreated bytf.feature_column.numeric_columndefining feature column representing
weights. It is used to down weight or boost examples during training. It
will be multiplied by the loss of the example. | 
| label_vocabulary | A list or tuple of strings representing possible label
values. If it is not given, that means labels are already encoded as an
integer within [0, n_classes). If given, labels must be of string type and
have any value in label_vocabulary. Note that errors will be raised iflabel_vocabularyis not provided but labels are strings. If bothn_classesandlabel_vocabularyare provided,label_vocabularyshould
contain exactlyn_classesitems. | 
| loss_reduction | One of tf.losses.ReductionexceptNONE. Decides how to
reduce training loss over batch. Defaults toSUM_OVER_BATCH_SIZE, namely
weighted sum of losses divided bybatch size * label_dimension. | 
| loss_fn | Optional loss function. | 
| name | Name of the head. If provided, summary and metrics keys will be
suffixed by "/" + name. Also used asname_scopewhen creating ops. | 
| Attributes | |
|---|---|
| logits_dimension | See base_head.Headfor details. | 
| loss_reduction | See base_head.Headfor details. | 
| name | See base_head.Headfor details. | 
Methods
create_estimator_spec
create_estimator_spec(
    features,
    mode,
    logits,
    labels=None,
    optimizer=None,
    trainable_variables=None,
    train_op_fn=None,
    update_ops=None,
    regularization_losses=None
)
Returns EstimatorSpec that a model_fn can return.
It is recommended to pass all args via name.
| Args | |
|---|---|
| features | Input dictmapping string feature names toTensororSparseTensorobjects containing the values for that feature in a
minibatch. Often to be used to fetch example-weight tensor. | 
| mode | Estimator's ModeKeys. | 
| logits | Logits Tensorto be used by the head. | 
| labels | Labels Tensor, ordictmapping string label names toTensorobjects of the label values. | 
| optimizer | An tf.keras.optimizers.Optimizerinstance to optimize the
loss in TRAIN mode. Namely, setstrain_op = optimizer.get_updates(loss,
trainable_variables), which updates variables to minimizeloss. | 
| trainable_variables | A list or tuple of Variableobjects to update to
minimizeloss. In Tensorflow 1.x, by default these are the list of
variables collected in the graph under the keyGraphKeys.TRAINABLE_VARIABLES. As Tensorflow 2.x doesn't have
collections and GraphKeys, trainable_variables need to be passed
explicitly here. | 
| train_op_fn | Function that takes a scalar loss Tensorand returns an op
to optimize the model with the loss in TRAIN mode. Used ifoptimizerisNone. Exactly one oftrain_op_fnandoptimizermust be set in
TRAIN mode. By default, it isNonein other modes. If you want to
optimize loss yourself, you can passlambda _: tf.no_op()and then useEstimatorSpec.lossto compute and apply gradients. | 
| update_ops | A list or tuple of update ops to be run at training time. For example, layers such as BatchNormalization create mean and variance update ops that need to be run at training time. In Tensorflow 1.x, these are thrown into an UPDATE_OPS collection. As Tensorflow 2.x doesn't have collections, update_ops need to be passed explicitly here. | 
| regularization_losses | A list of additional scalar losses to be added to the training loss, such as regularization losses. | 
| Returns | |
|---|---|
| EstimatorSpec. | 
loss
loss(
    labels, logits, features=None, mode=None, regularization_losses=None
)
Returns regularized training loss. See base_head.Head for details.
metrics
metrics(
    regularization_losses=None
)
Creates metrics. See base_head.Head for details.
predictions
predictions(
    logits, keys=None
)
Return predictions based on keys.
See base_head.Head for details.
| Args | |
|---|---|
| logits | logits Tensorwith shape[D0, D1, ... DN, logits_dimension].
For many applications, the shape is[batch_size, logits_dimension]. | 
| keys | a list or tuple of prediction keys. Each key can be either the class variable of prediction_keys.PredictionKeys or its string value, such as: prediction_keys.PredictionKeys.CLASSES or 'classes'. If not specified, it will return the predictions for all valid keys. | 
| Returns | |
|---|---|
| A dict of predictions. | 
update_metrics
update_metrics(
    eval_metrics, features, logits, labels, regularization_losses=None
)
Updates eval metrics. See base_head.Head for details.