View source on GitHub
  
 | 
Computes the squared hinge loss between y_true & y_pred.
tf.keras.metrics.squared_hinge(
    y_true, y_pred
)
loss = mean(square(maximum(1 - y_true * y_pred, 0)), axis=-1)
Standalone usage:
y_true = np.random.choice([-1, 1], size=(2, 3))y_pred = np.random.random(size=(2, 3))loss = tf.keras.losses.squared_hinge(y_true, y_pred)assert loss.shape == (2,)assert np.array_equal(loss.numpy(),np.mean(np.square(np.maximum(1. - y_true * y_pred, 0.)), axis=-1))
Returns | |
|---|---|
Squared hinge loss values. shape = [batch_size, d0, .. dN-1].
 | 
    View source on GitHub