Creates a dataset that applies f to the outputs of input_dataset.
tf.raw_ops.ExperimentalParallelInterleaveDataset(
    input_dataset,
    other_arguments,
    cycle_length,
    block_length,
    sloppy,
    buffer_output_elements,
    prefetch_input_elements,
    f,
    output_types,
    output_shapes,
    name=None
)
The resulting dataset is similar to the InterleaveDataset, with the exception
that if retrieving the next value from a dataset would cause the requester to
block, it will skip that input dataset. This dataset is especially useful
when loading data from a variable-latency datastores (e.g. HDFS, GCS), as it
allows the training step to proceed so long as some data is available.
!! WARNING !! This dataset is not deterministic!
| Args | |
|---|---|
| input_dataset | A Tensorof typevariant. | 
| other_arguments | A list of Tensorobjects. | 
| cycle_length | A Tensorof typeint64. | 
| block_length | A Tensorof typeint64. | 
| sloppy | A Tensorof typebool. | 
| buffer_output_elements | A Tensorof typeint64. | 
| prefetch_input_elements | A Tensorof typeint64. | 
| f | A function decorated with @Defun.
A function mapping elements of input_dataset, concatenated withother_arguments, to a Dataset variant that contains elements matchingoutput_typesandoutput_shapes. | 
| output_types | A list of tf.DTypesthat has length>= 1. | 
| output_shapes | A list of shapes (each a tf.TensorShapeor list ofints) that has length>= 1. | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensorof typevariant. |