tf.raw_ops.Multinomial
    
    
      
    
    
      
      Stay organized with collections
    
    
      
      Save and categorize content based on your preferences.
    
  
  
      
    
  
  
  
  
  
    
  
  
    
    
Draws samples from a multinomial distribution.
tf.raw_ops.Multinomial(
    logits,
    num_samples,
    seed=0,
    seed2=0,
    output_dtype=tf.dtypes.int64,
    name=None
)
| Args | 
|---|
| logits | A Tensor. Must be one of the following types:float32,float64,int32,uint8,int16,int8,int64,bfloat16,uint16,half,uint32,uint64.
2-D Tensor with shape[batch_size, num_classes].  Each slice[i, :]represents the unnormalized log probabilities for all classes. | 
| num_samples | A Tensorof typeint32.
0-D.  Number of independent samples to draw for each row slice. | 
| seed | An optional int. Defaults to0.
If either seed or seed2 is set to be non-zero, the internal random number
generator is seeded by the given seed.  Otherwise, a random seed is used. | 
| seed2 | An optional int. Defaults to0.
A second seed to avoid seed collision. | 
| output_dtype | An optional tf.DTypefrom:tf.int32, tf.int64. Defaults totf.int64. | 
| name | A name for the operation (optional). | 
| Returns | 
|---|
| A Tensorof typeoutput_dtype. | 
  
  
 
  
    
    
      
       
    
    
  
  
  Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates. Some content is licensed under the numpy license.
  Last updated 2023-03-27 UTC.
  
  
  
    
      [null,null,["Last updated 2023-03-27 UTC."],[],[]]