A string, one of channels_last (default) or
channels_first. The ordering of the dimensions in the inputs.
channels_last corresponds to inputs with shape
(batch, height, width, channels) while channels_first corresponds to
inputs with shape (batch, channels, height, width).
Returns
Reshaped tensor.
Examples:
x=tf.compat.v1.placeholder(shape=(None,4,4),dtype='float32')y=flatten(x)# now `y` has shape `(None, 16)`x=tf.compat.v1.placeholder(shape=(None,3,None),dtype='float32')y=flatten(x)# now `y` has shape `(None, None)`
[null,null,["Last updated 2023-10-06 UTC."],[],[],null,["# tf.compat.v1.layers.flatten\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------------------------------------------------|\n| [View source on GitHub](https://github.com/keras-team/keras/tree/v2.12.0/keras/legacy_tf_layers/core.py#L487-L557) |\n\nFlattens an input tensor while preserving the batch axis (axis 0). \n\n tf.compat.v1.layers.flatten(\n inputs, name=None, data_format='channels_last'\n )\n\n\u003cbr /\u003e\n\nMigrate to TF2\n--------------\n\n\u003cbr /\u003e\n\n| **Caution:** This API was designed for TensorFlow v1. Continue reading for details on how to migrate from this API to a native TensorFlow v2 equivalent. See the [TensorFlow v1 to TensorFlow v2 migration guide](https://www.tensorflow.org/guide/migrate) for instructions on how to migrate the rest of your code.\n\nThis API is a legacy api that is only compatible with eager execution and\n[`tf.function`](../../../../tf/function) if you combine it with\n[`tf.compat.v1.keras.utils.track_tf1_style_variables`](../../../../tf/compat/v1/keras/utils/track_tf1_style_variables)\n\nPlease refer to [tf.layers model mapping section of the migration guide](https://www.tensorflow.org/guide/migrate/model_mapping)\nto learn how to use your TensorFlow v1 model in TF2 with Keras.\n\nThe corresponding TensorFlow v2 layer is [`tf.keras.layers.Flatten`](../../../../tf/keras/layers/Flatten).\n\n#### Structural Mapping to Native TF2\n\nNone of the supported arguments have changed name.\n\nBefore: \n\n y = tf.compat.v1.layers.flatten(x)\n\nAfter:\n\nTo migrate code using TF1 functional layers use the [Keras Functional API](https://www.tensorflow.org/guide/keras/functional): \n\n x = tf.keras.Input((28, 28, 1))\n y = tf.keras.layers.Flatten()(x)\n model = tf.keras.Model(x, y)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\nDescription\n-----------\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `inputs` | Tensor input. |\n| `name` | The name of the layer (string). |\n| `data_format` | A string, one of `channels_last` (default) or `channels_first`. The ordering of the dimensions in the inputs. `channels_last` corresponds to inputs with shape `(batch, height, width, channels)` while `channels_first` corresponds to inputs with shape `(batch, channels, height, width)`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| Reshaped tensor. ||\n\n\u003cbr /\u003e\n\n#### Examples:\n\n x = tf.compat.v1.placeholder(shape=(None, 4, 4), dtype='float32')\n y = flatten(x)\n # now `y` has shape `(None, 16)`\n\n x = tf.compat.v1.placeholder(shape=(None, 3, None), dtype='float32')\n y = flatten(x)\n # now `y` has shape `(None, None)`"]]