tf.keras.callbacks.RemoteMonitor

TensorFlow 1 version View source on GitHub

Callback used to stream events to a server.

Inherits From: Callback

tf.keras.callbacks.RemoteMonitor(
    root='http://localhost:9000', path='/publish/epoch/end/', field='data',
    headers=None, send_as_json=False
)

Requires the requests library. Events are sent to root + '/publish/epoch/end/' by default. Calls are HTTP POST, with a data argument which is a JSON-encoded dictionary of event data. If send_as_json is set to True, the content type of the request will be application/json. Otherwise the serialized JSON will be sent within a form.

Arguments:

  • root: String; root url of the target server.
  • path: String; path relative to root to which the events will be sent.
  • field: String; JSON field under which the data will be stored. The field is used only if the payload is sent within a form (i.e. send_as_json is set to False).
  • headers: Dictionary; optional custom HTTP headers.
  • send_as_json: Boolean; whether the request should be sent as application/json.

Methods

on_batch_begin

View source

on_batch_begin(
    batch, logs=None
)

A backwards compatibility alias for on_train_batch_begin.

on_batch_end

View source

on_batch_end(
    batch, logs=None
)

A backwards compatibility alias for on_train_batch_end.

on_epoch_begin

View source

on_epoch_begin(
    epoch, logs=None
)

Called at the start of an epoch.

Subclasses should override for any actions to run. This function should only be called during TRAIN mode.

Arguments:

  • epoch: integer, index of epoch.
  • logs: dict. Currently no data is passed to this argument for this method but that may change in the future.

on_epoch_end

View source

on_epoch_end(
    epoch, logs=None
)

Called at the end of an epoch.

Subclasses should override for any actions to run. This function should only be called during TRAIN mode.

Arguments:

  • epoch: integer, index of epoch.
  • logs: dict, metric results for this training epoch, and for the validation epoch if validation is performed. Validation result keys are prefixed with val_.

on_predict_batch_begin

View source

on_predict_batch_begin(
    batch, logs=None
)

Called at the beginning of a batch in predict methods.

Subclasses should override for any actions to run.

Arguments:

  • batch: integer, index of batch within the current epoch.
  • logs: dict. Has keys batch and size representing the current batch number and the size of the batch.

on_predict_batch_end

View source

on_predict_batch_end(
    batch, logs=None
)

Called at the end of a batch in predict methods.

Subclasses should override for any actions to run.

Arguments:

  • batch: integer, index of batch within the current epoch.
  • logs: dict. Metric results for this batch.

on_predict_begin

View source

on_predict_begin(
    logs=None
)

Called at the beginning of prediction.

Subclasses should override for any actions to run.

Arguments:

  • logs: dict. Currently no data is passed to this argument for this method but that may change in the future.

on_predict_end

View source

on_predict_end(
    logs=None
)

Called at the end of prediction.

Subclasses should override for any actions to run.

Arguments:

  • logs: dict. Currently no data is passed to this argument for this method but that may change in the future.

on_test_batch_begin

View source

on_test_batch_begin(
    batch, logs=None
)

Called at the beginning of a batch in evaluate methods.

Also called at the beginning of a validation batch in the fit methods, if validation data is provided.

Subclasses should override for any actions to run.

Arguments:

  • batch: integer, index of batch within the current epoch.
  • logs: dict. Has keys batch and size representing the current batch number and the size of the batch.

on_test_batch_end

View source

on_test_batch_end(
    batch, logs=None
)

Called at the end of a batch in evaluate methods.

Also called at the end of a validation batch in the fit methods, if validation data is provided.

Subclasses should override for any actions to run.

Arguments:

  • batch: integer, index of batch within the current epoch.
  • logs: dict. Metric results for this batch.

on_test_begin

View source

on_test_begin(
    logs=None
)

Called at the beginning of evaluation or validation.

Subclasses should override for any actions to run.

Arguments:

  • logs: dict. Currently no data is passed to this argument for this method but that may change in the future.

on_test_end

View source

on_test_end(
    logs=None
)

Called at the end of evaluation or validation.

Subclasses should override for any actions to run.

Arguments:

  • logs: dict. Currently no data is passed to this argument for this method but that may change in the future.

on_train_batch_begin

View source

on_train_batch_begin(
    batch, logs=None
)

Called at the beginning of a training batch in fit methods.

Subclasses should override for any actions to run.

Arguments:

  • batch: integer, index of batch within the current epoch.
  • logs: dict. Has keys batch and size representing the current batch number and the size of the batch.

on_train_batch_end

View source

on_train_batch_end(
    batch, logs=None
)

Called at the end of a training batch in fit methods.

Subclasses should override for any actions to run.

Arguments:

  • batch: integer, index of batch within the current epoch.
  • logs: dict. Metric results for this batch.

on_train_begin

View source

on_train_begin(
    logs=None
)

Called at the beginning of training.

Subclasses should override for any actions to run.

Arguments:

  • logs: dict. Currently no data is passed to this argument for this method but that may change in the future.

on_train_end

View source

on_train_end(
    logs=None
)

Called at the end of training.

Subclasses should override for any actions to run.

Arguments:

  • logs: dict. Currently no data is passed to this argument for this method but that may change in the future.

set_model

View source

set_model(
    model
)

set_params

View source

set_params(
    params
)