TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
Represents discretized dense input.
tf.feature_column.bucketized_column(
    source_column, boundaries
)
Buckets include the left boundary, and exclude the right boundary. Namely,
boundaries=[0., 1., 2.] generates buckets (-inf, 0.), [0., 1.),
[1., 2.), and [2., +inf).
For example, if the inputs are
boundaries = [0, 10, 100]
input tensor = [[-5, 10000]
                [150,   10]
                [5,    100]]
then the output will be
output = [[0, 3]
          [3, 2]
          [1, 3]]
Example:
price = numeric_column('price')
bucketized_price = bucketized_column(price, boundaries=[...])
columns = [bucketized_price, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
# or
columns = [bucketized_price, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
dense_tensor = input_layer(features, columns)
bucketized_column can also be crossed with another categorical column using
crossed_column:
price = numeric_column('price')
# bucketized_column converts numerical feature to a categorical one.
bucketized_price = bucketized_column(price, boundaries=[...])
# 'keywords' is a string feature.
price_x_keywords = crossed_column([bucketized_price, 'keywords'], 50K)
columns = [price_x_keywords, ...]
features = tf.io.parse_example(..., features=make_parse_example_spec(columns))
linear_prediction = linear_model(features, columns)
Args | |
|---|---|
source_column
 | 
A one-dimensional dense column which is generated with
numeric_column.
 | 
boundaries
 | 
A sorted list or tuple of floats specifying the boundaries. | 
Returns | |
|---|---|
A BucketizedColumn.
 | 
Raises | |
|---|---|
ValueError
 | 
If source_column is not a numeric column, or if it is not
one-dimensional.
 | 
ValueError
 | 
If boundaries is not a sorted list or tuple.
 | 
  TensorFlow 1 version
    View source on GitHub