The Glorot normal initializer, also called Xavier normal initializer.
Inherits From: VarianceScaling
tf.keras.initializers.GlorotNormal(
    seed=None
)
It draws samples from a truncated normal distribution centered on 0
with stddev = sqrt(2 / (fan_in + fan_out))
where fan_in is the number of input units in the weight tensor
and fan_out is the number of output units in the weight tensor.
References:
Glorot et al., 2010
(pdf)
Methods
from_config
View source
@classmethod
from_config(
    config
)
Instantiates an initializer from a configuration dictionary.
Example:
initializer = RandomUniform(-1, 1)
config = initializer.get_config()
initializer = RandomUniform.from_config(config)
| Args | 
config
 | 
A Python dictionary.
It will typically be the output of get_config.
 | 
| Returns | 
| 
An Initializer instance.
 | 
get_config
View source
get_config()
Returns the configuration of the initializer as a JSON-serializable dict.
| Returns | 
| 
A JSON-serializable Python dict.
 | 
__call__
View source
__call__(
    shape, dtype=tf.dtypes.float32
)
Returns a tensor object initialized as specified by the initializer.
| Args | 
shape
 | 
Shape of the tensor.
 | 
dtype
 | 
Optional dtype of the tensor. Only floating point types are
supported.
 | 
| Raises | 
ValueError
 | 
If the dtype is not floating point
 |