tf.math.bincount
Stay organized with collections
Save and categorize content based on your preferences.
Counts the number of occurrences of each value in an integer array.
tf.math.bincount(
arr, weights=None, minlength=None, maxlength=None, dtype=tf.dtypes.int32,
name=None
)
If minlength
and maxlength
are not given, returns a vector with length
tf.reduce_max(arr) + 1
if arr
is non-empty, and length 0 otherwise.
If weights
are non-None, then index i
of the output stores the sum of the
value in weights
at each index where the corresponding value in arr
is
i
.
values = tf.constant([1,1,2,3,2,4,4,5])
tf.math.bincount(values) #[0 2 2 1 2 1]
Vector length = Maximum element in vector values
is 5. Adding 1, which is 6
will be the vector length.
Each bin value in the output indicates number of occurrences of the particular
index. Here, index 1 in output has a value 2. This indicates value 1 occurs
two times in values
.
values = tf.constant([1,1,2,3,2,4,4,5])
weights = tf.constant([1,5,0,1,0,5,4,5])
tf.math.bincount(values, weights=weights) #[0 6 0 1 9 5]
Bin will be incremented by the corresponding weight instead of 1.
Here, index 1 in output has a value 6. This is the summation of weights
corresponding to the value in values
.
Args |
arr
|
An int32 tensor of non-negative values.
|
weights
|
If non-None, must be the same shape as arr. For each value in
arr , the bin will be incremented by the corresponding weight instead of
1.
|
minlength
|
If given, ensures the output has length at least minlength ,
padding with zeros at the end if necessary.
|
maxlength
|
If given, skips values in arr that are equal or greater than
maxlength , ensuring that the output has length at most maxlength .
|
dtype
|
If weights is None, determines the type of the output bins.
|
name
|
A name scope for the associated operations (optional).
|
Returns |
A vector with the same dtype as weights or the given dtype . The bin
values.
|
Raises |
InvalidArgumentError if negative values are provided as an input.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.math.bincount\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/math/bincount) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/ops/math_ops.py#L3156-L3228) |\n\nCounts the number of occurrences of each value in an integer array. \n\n tf.math.bincount(\n arr, weights=None, minlength=None, maxlength=None, dtype=tf.dtypes.int32,\n name=None\n )\n\nIf `minlength` and `maxlength` are not given, returns a vector with length\n`tf.reduce_max(arr) + 1` if `arr` is non-empty, and length 0 otherwise.\nIf `weights` are non-None, then index `i` of the output stores the sum of the\nvalue in `weights` at each index where the corresponding value in `arr` is\n`i`. \n\n values = tf.constant([1,1,2,3,2,4,4,5])\n tf.math.bincount(values) #[0 2 2 1 2 1]\n\nVector length = Maximum element in vector `values` is 5. Adding 1, which is 6\nwill be the vector length.\n\nEach bin value in the output indicates number of occurrences of the particular\nindex. Here, index 1 in output has a value 2. This indicates value 1 occurs\ntwo times in `values`. \n\n values = tf.constant([1,1,2,3,2,4,4,5])\n weights = tf.constant([1,5,0,1,0,5,4,5])\n tf.math.bincount(values, weights=weights) #[0 6 0 1 9 5]\n\nBin will be incremented by the corresponding weight instead of 1.\nHere, index 1 in output has a value 6. This is the summation of weights\ncorresponding to the value in `values`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|-------------|--------------------------------------------------------------------------------------------------------------------------------------------|\n| `arr` | An int32 tensor of non-negative values. |\n| `weights` | If non-None, must be the same shape as arr. For each value in `arr`, the bin will be incremented by the corresponding weight instead of 1. |\n| `minlength` | If given, ensures the output has length at least `minlength`, padding with zeros at the end if necessary. |\n| `maxlength` | If given, skips values in `arr` that are equal or greater than `maxlength`, ensuring that the output has length at most `maxlength`. |\n| `dtype` | If `weights` is None, determines the type of the output bins. |\n| `name` | A name scope for the associated operations (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A vector with the same dtype as `weights` or the given `dtype`. The bin values. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|---|---|\n| `InvalidArgumentError` if negative values are provided as an input. ||\n\n\u003cbr /\u003e"]]