View source on GitHub |
Optimization parameters for Adam with TPU embeddings.
tf.compat.v1.tpu.experimental.AdamParameters(
learning_rate, beta1=0.9, beta2=0.999, epsilon=1e-08, lazy_adam=True,
sum_inside_sqrt=True, use_gradient_accumulation=True, clip_weight_min=None,
clip_weight_max=None
)
Pass this to tf.estimator.tpu.experimental.EmbeddingConfigSpec
via the
optimization_parameters
argument to set the optimizer and its parameters.
See the documentation for tf.estimator.tpu.experimental.EmbeddingConfigSpec
for more details.
estimator = tf.estimator.tpu.TPUEstimator(
...
embedding_config_spec=tf.estimator.tpu.experimental.EmbeddingConfigSpec(
...
optimization_parameters=tf.tpu.experimental.AdamParameters(0.1),
...))
Args | |
---|---|
learning_rate
|
a floating point value. The learning rate. |
beta1
|
A float value. The exponential decay rate for the 1st moment estimates. |
beta2
|
A float value. The exponential decay rate for the 2nd moment estimates. |
epsilon
|
A small constant for numerical stability. |
lazy_adam
|
Use lazy Adam instead of Adam. Lazy Adam trains faster.
Please see optimization_parameters.proto for details.
|
sum_inside_sqrt
|
This improves training speed. Please see
optimization_parameters.proto for details.
|
use_gradient_accumulation
|
setting this to False makes embedding
gradients calculation less accurate but faster. Please see
optimization_parameters.proto for details.
for details.
|
clip_weight_min
|
the minimum value to clip by; None means -infinity. |
clip_weight_max
|
the maximum value to clip by; None means +infinity. |