tf.keras.losses.CategoricalHinge
Stay organized with collections
Save and categorize content based on your preferences.
Computes the categorical hinge loss between y_true
and y_pred
.
tf.keras.losses.CategoricalHinge(
reduction=losses_utils.ReductionV2.AUTO, name='categorical_hinge'
)
loss = maximum(neg - pos + 1, 0)
where neg = sum(y_true * y_pred)
and pos = maximum(1 - y_true)
Usage:
ch = tf.keras.losses.CategoricalHinge()
loss = ch([0., 1., 1.], [1., 0., 1.])
print('Loss: ', loss.numpy()) # Loss: 1.0
Usage with the compile
API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.CategoricalHinge())
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config()
__call__
View source
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a
coefficient for the loss. If a scalar is provided, then the loss is
simply scaled by the given value. If sample_weight is a tensor of size
[batch_size] , then the total loss for each sample of the batch is
rescaled by the corresponding element in the sample_weight vector. If
the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is scaled
by the corresponding value of sample_weight . (Note ondN-1 : all loss
functions reduce by 1 dimension, usually axis=-1.)
|
Returns |
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note dN-1
because all loss functions reduce by 1 dimension, usually axis=-1.)
|
Raises |
ValueError
|
If the shape of sample_weight is invalid.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.losses.CategoricalHinge\n\n\u003cbr /\u003e\n\n|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/losses/CategoricalHinge) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/losses.py#L599-L625) |\n\nComputes the categorical hinge loss between `y_true` and `y_pred`.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.losses.CategoricalHinge`](/api_docs/python/tf/keras/losses/CategoricalHinge)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.losses.CategoricalHinge`](/api_docs/python/tf/keras/losses/CategoricalHinge)\n\n\u003cbr /\u003e\n\n tf.keras.losses.CategoricalHinge(\n reduction=losses_utils.ReductionV2.AUTO, name='categorical_hinge'\n )\n\n`loss = maximum(neg - pos + 1, 0)`\nwhere `neg = sum(y_true * y_pred)` and `pos = maximum(1 - y_true)`\n\n#### Usage:\n\n ch = tf.keras.losses.CategoricalHinge()\n loss = ch([0., 1., 1.], [1., 0., 1.])\n print('Loss: ', loss.numpy()) # Loss: 1.0\n\nUsage with the `compile` API: \n\n model = tf.keras.Model(inputs, outputs)\n model.compile('sgd', loss=tf.keras.losses.CategoricalHinge())\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/losses.py#L130-L140) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `Loss` from its config (output of `get_config()`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Loss` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/losses.py#L223-L228) \n\n get_config()\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/losses.py#L96-L128) \n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]` |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]` |\n| `sample_weight` | Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.) ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ||\n|--------------|---------------------------------------------|\n| `ValueError` | If the shape of `sample_weight` is invalid. |\n\n\u003cbr /\u003e"]]