tf.keras.losses.SparseCategoricalCrossentropy
Stay organized with collections
Save and categorize content based on your preferences.
Computes the crossentropy loss between the labels and predictions.
tf.keras.losses.SparseCategoricalCrossentropy(
from_logits=False, reduction=losses_utils.ReductionV2.AUTO,
name='sparse_categorical_crossentropy'
)
Use this crossentropy loss function when there are two or more label classes.
We expect labels to be provided as integers. If you want to provide labels
using one-hot
representation, please use CategoricalCrossentropy
loss.
There should be # classes
floating point values per feature for y_pred
and a single floating point value per feature for y_true
.
In the snippet below, there is a single floating point value per example for
y_true
and # classes
floating pointing values per example for y_pred
.
The shape of y_true
is [batch_size]
and the shape of y_pred
is
[batch_size, num_classes]
.
Usage:
cce = tf.keras.losses.SparseCategoricalCrossentropy()
loss = cce(
[0, 1, 2],
[[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]])
print('Loss: ', loss.numpy()) # Loss: 0.3239
Usage with the compile
API:
model = tf.keras.Model(inputs, outputs)
model.compile('sgd', loss=tf.keras.losses.SparseCategoricalCrossentropy())
Args |
from_logits
|
Whether y_pred is expected to be a logits tensor. By default,
we assume that y_pred encodes a probability distribution.
Note: Using from_logits=True may be more numerically stable.
|
reduction
|
(Optional) Type of tf.keras.losses.Reduction to apply to loss.
Default value is AUTO . AUTO indicates that the reduction option will
be determined by the usage context. For almost all cases this defaults to
SUM_OVER_BATCH_SIZE .
When used with tf.distribute.Strategy , outside of built-in training
loops such as tf.keras compile and fit , using AUTO or
SUM_OVER_BATCH_SIZE will raise an error. Please see
https://www.tensorflow.org/alpha/tutorials/distribute/training_loops
for more details on this.
|
name
|
Optional name for the op.
|
Methods
from_config
View source
@classmethod
from_config(
config
)
Instantiates a Loss
from its config (output of get_config()
).
Args |
config
|
Output of get_config() .
|
get_config
View source
get_config()
__call__
View source
__call__(
y_true, y_pred, sample_weight=None
)
Invokes the Loss
instance.
Args |
y_true
|
Ground truth values. shape = [batch_size, d0, .. dN]
|
y_pred
|
The predicted values. shape = [batch_size, d0, .. dN]
|
sample_weight
|
Optional sample_weight acts as a
coefficient for the loss. If a scalar is provided, then the loss is
simply scaled by the given value. If sample_weight is a tensor of size
[batch_size] , then the total loss for each sample of the batch is
rescaled by the corresponding element in the sample_weight vector. If
the shape of sample_weight is [batch_size, d0, .. dN-1] (or can be
broadcasted to this shape), then each loss element of y_pred is scaled
by the corresponding value of sample_weight . (Note ondN-1 : all loss
functions reduce by 1 dimension, usually axis=-1.)
|
Returns |
Weighted loss float Tensor . If reduction is NONE , this has
shape [batch_size, d0, .. dN-1] ; otherwise, it is scalar. (Note dN-1
because all loss functions reduce by 1 dimension, usually axis=-1.)
|
Raises |
ValueError
|
If the shape of sample_weight is invalid.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.losses.SparseCategoricalCrossentropy\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/losses.py#L473-L528) |\n\nComputes the crossentropy loss between the labels and predictions.\n\n#### View aliases\n\n\n**Main aliases**\n\n[`tf.losses.SparseCategoricalCrossentropy`](/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy)\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.losses.SparseCategoricalCrossentropy`](/api_docs/python/tf/keras/losses/SparseCategoricalCrossentropy)\n\n\u003cbr /\u003e\n\n tf.keras.losses.SparseCategoricalCrossentropy(\n from_logits=False, reduction=losses_utils.ReductionV2.AUTO,\n name='sparse_categorical_crossentropy'\n )\n\nUse this crossentropy loss function when there are two or more label classes.\nWe expect labels to be provided as integers. If you want to provide labels\nusing `one-hot` representation, please use `CategoricalCrossentropy` loss.\nThere should be `# classes` floating point values per feature for `y_pred`\nand a single floating point value per feature for `y_true`.\n\nIn the snippet below, there is a single floating point value per example for\n`y_true` and `# classes` floating pointing values per example for `y_pred`.\nThe shape of `y_true` is `[batch_size]` and the shape of `y_pred` is\n`[batch_size, num_classes]`.\n\n#### Usage:\n\n cce = tf.keras.losses.SparseCategoricalCrossentropy()\n loss = cce(\n [0, 1, 2],\n [[.9, .05, .05], [.5, .89, .6], [.05, .01, .94]])\n print('Loss: ', loss.numpy()) # Loss: 0.3239\n\nUsage with the `compile` API: \n\n model = tf.keras.Model(inputs, outputs)\n model.compile('sgd', loss=tf.keras.losses.SparseCategoricalCrossentropy())\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `from_logits` | Whether `y_pred` is expected to be a logits tensor. By default, we assume that `y_pred` encodes a probability distribution. Note: Using from_logits=True may be more numerically stable. |\n| `reduction` | (Optional) Type of [`tf.keras.losses.Reduction`](../../../tf/keras/losses/Reduction) to apply to loss. Default value is `AUTO`. `AUTO` indicates that the reduction option will be determined by the usage context. For almost all cases this defaults to `SUM_OVER_BATCH_SIZE`. When used with [`tf.distribute.Strategy`](../../../tf/distribute/Strategy), outside of built-in training loops such as [`tf.keras`](../../../tf/keras) `compile` and `fit`, using `AUTO` or `SUM_OVER_BATCH_SIZE` will raise an error. Please see https://www.tensorflow.org/alpha/tutorials/distribute/training_loops for more details on this. |\n| `name` | Optional name for the op. |\n\n\u003cbr /\u003e\n\nMethods\n-------\n\n### `from_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/losses.py#L130-L140) \n\n @classmethod\n from_config(\n config\n )\n\nInstantiates a `Loss` from its config (output of `get_config()`).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|----------|---------------------------|\n| `config` | Output of `get_config()`. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| A `Loss` instance. ||\n\n\u003cbr /\u003e\n\n### `get_config`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/losses.py#L223-L228) \n\n get_config()\n\n### `__call__`\n\n[View source](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/keras/losses.py#L96-L128) \n\n __call__(\n y_true, y_pred, sample_weight=None\n )\n\nInvokes the `Loss` instance.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ||\n|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `y_true` | Ground truth values. shape = `[batch_size, d0, .. dN]` |\n| `y_pred` | The predicted values. shape = `[batch_size, d0, .. dN]` |\n| `sample_weight` | Optional `sample_weight` acts as a coefficient for the loss. If a scalar is provided, then the loss is simply scaled by the given value. If `sample_weight` is a tensor of size `[batch_size]`, then the total loss for each sample of the batch is rescaled by the corresponding element in the `sample_weight` vector. If the shape of `sample_weight` is `[batch_size, d0, .. dN-1]` (or can be broadcasted to this shape), then each loss element of `y_pred` is scaled by the corresponding value of `sample_weight`. (Note on`dN-1`: all loss functions reduce by 1 dimension, usually axis=-1.) |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ||\n|---|---|\n| Weighted loss float `Tensor`. If `reduction` is `NONE`, this has shape `[batch_size, d0, .. dN-1]`; otherwise, it is scalar. (Note `dN-1` because all loss functions reduce by 1 dimension, usually axis=-1.) ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ||\n|--------------|---------------------------------------------|\n| `ValueError` | If the shape of `sample_weight` is invalid. |\n\n\u003cbr /\u003e"]]