TensorFlow 1 version
 | 
  
     
    View source on GitHub
  
 | 
A LearningRateSchedule that uses a polynomial decay schedule.
Inherits From: LearningRateSchedule
tf.keras.optimizers.schedules.PolynomialDecay(
    initial_learning_rate, decay_steps, end_learning_rate=0.0001, power=1.0,
    cycle=False, name=None
)
Args | |
|---|---|
initial_learning_rate
 | 
A scalar float32 or float64 Tensor or a
Python number.  The initial learning rate.
 | 
decay_steps
 | 
A scalar int32 or int64 Tensor or a Python number.
Must be positive.  See the decay computation above.
 | 
end_learning_rate
 | 
A scalar float32 or float64 Tensor or a
Python number.  The minimal end learning rate.
 | 
power
 | 
A scalar float32 or float64 Tensor or a
Python number.  The power of the polynomial. Defaults to linear, 1.0.
 | 
cycle
 | 
A boolean, whether or not it should cycle beyond decay_steps. | 
name
 | 
String. Optional name of the operation. Defaults to 'PolynomialDecay'. | 
Methods
from_config
@classmethodfrom_config( config )
Instantiates a LearningRateSchedule from its config.
| Args | |
|---|---|
config
 | 
Output of get_config().
 | 
| Returns | |
|---|---|
A LearningRateSchedule instance.
 | 
get_config
get_config()
__call__
__call__(
    step
)
Call self as a function.
  TensorFlow 1 version
    View source on GitHub