tf.linalg.matvec
Stay organized with collections
Save and categorize content based on your preferences.
Multiplies matrix a
by vector b
, producing a
* b
.
tf.linalg.matvec(
a, b, transpose_a=False, adjoint_a=False, a_is_sparse=False, b_is_sparse=False,
name=None
)
The matrix a
must, following any transpositions, be a tensor of rank >= 2,
and we must have shape(b) = shape(a)[:-2] + [shape(a)[-1]]
.
Both a
and b
must be of the same type. The supported types are:
float16
, float32
, float64
, int32
, complex64
, complex128
.
Matrix a
can be transposed or adjointed (conjugated and transposed) on
the fly by setting one of the corresponding flag to True
. These are False
by default.
If one or both of the inputs contain a lot of zeros, a more efficient
multiplication algorithm can be used by setting the corresponding
a_is_sparse
or b_is_sparse
flag to True
. These are False
by default.
This optimization is only available for plain matrices/vectors (rank-2/1
tensors) with datatypes bfloat16
or float32
.
For example:
# 2-D tensor `a`
# [[1, 2, 3],
# [4, 5, 6]]
a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
# 1-D tensor `b`
# [7, 9, 11]
b = tf.constant([7, 9, 11], shape=[3])
# `a` * `b`
# [ 58, 64]
c = tf.matvec(a, b)
# 3-D tensor `a`
# [[[ 1, 2, 3],
# [ 4, 5, 6]],
# [[ 7, 8, 9],
# [10, 11, 12]]]
a = tf.constant(np.arange(1, 13, dtype=np.int32),
shape=[2, 2, 3])
# 2-D tensor `b`
# [[13, 14, 15],
# [16, 17, 18]]
b = tf.constant(np.arange(13, 19, dtype=np.int32),
shape=[2, 3])
# `a` * `b`
# [[ 86, 212],
# [410, 563]]
c = tf.matvec(a, b)
Args |
a
|
Tensor of type float16 , float32 , float64 , int32 , complex64 ,
complex128 and rank > 1.
|
b
|
Tensor with same type and rank = rank(a) - 1 .
|
transpose_a
|
If True , a is transposed before multiplication.
|
adjoint_a
|
If True , a is conjugated and transposed before
multiplication.
|
a_is_sparse
|
If True , a is treated as a sparse matrix.
|
b_is_sparse
|
If True , b is treated as a sparse matrix.
|
name
|
Name for the operation (optional).
|
Returns |
A Tensor of the same type as a and b where each inner-most vector is
the product of the corresponding matrices in a and vectors in b , e.g. if
all transpose or adjoint attributes are False :
output [..., i] = sum_k (a [..., i, k] * b [..., k]), for all indices i.
|
Note
|
This is matrix-vector product, not element-wise product.
|
Raises |
ValueError
|
If transpose_a and adjoint_a are both set to True.
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.linalg.matvec\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/linalg/matvec) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/ops/math_ops.py#L2768-L2863) |\n\nMultiplies matrix `a` by vector `b`, producing `a` \\* `b`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.linalg.matvec`](/api_docs/python/tf/linalg/matvec)\n\n\u003cbr /\u003e\n\n tf.linalg.matvec(\n a, b, transpose_a=False, adjoint_a=False, a_is_sparse=False, b_is_sparse=False,\n name=None\n )\n\nThe matrix `a` must, following any transpositions, be a tensor of rank \\\u003e= 2,\nand we must have `shape(b) = shape(a)[:-2] + [shape(a)[-1]]`.\n\nBoth `a` and `b` must be of the same type. The supported types are:\n`float16`, `float32`, `float64`, `int32`, `complex64`, `complex128`.\n\nMatrix `a` can be transposed or adjointed (conjugated and transposed) on\nthe fly by setting one of the corresponding flag to `True`. These are `False`\nby default.\n\nIf one or both of the inputs contain a lot of zeros, a more efficient\nmultiplication algorithm can be used by setting the corresponding\n`a_is_sparse` or `b_is_sparse` flag to `True`. These are `False` by default.\nThis optimization is only available for plain matrices/vectors (rank-2/1\ntensors) with datatypes `bfloat16` or `float32`.\n\n#### For example:\n\n # 2-D tensor `a`\n # [[1, 2, 3],\n # [4, 5, 6]]\n a = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])\n\n # 1-D tensor `b`\n # [7, 9, 11]\n b = tf.constant([7, 9, 11], shape=[3])\n\n # `a` * `b`\n # [ 58, 64]\n c = tf.matvec(a, b)\n\n\n # 3-D tensor `a`\n # [[[ 1, 2, 3],\n # [ 4, 5, 6]],\n # [[ 7, 8, 9],\n # [10, 11, 12]]]\n a = tf.constant(np.arange(1, 13, dtype=np.int32),\n shape=[2, 2, 3])\n\n # 2-D tensor `b`\n # [[13, 14, 15],\n # [16, 17, 18]]\n b = tf.constant(np.arange(13, 19, dtype=np.int32),\n shape=[2, 3])\n\n # `a` * `b`\n # [[ 86, 212],\n # [410, 563]]\n c = tf.matvec(a, b)\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|-----------------------------------------------------------------------------------------------------|\n| `a` | `Tensor` of type `float16`, `float32`, `float64`, `int32`, `complex64`, `complex128` and rank \\\u003e 1. |\n| `b` | `Tensor` with same type and rank = `rank(a) - 1`. |\n| `transpose_a` | If `True`, `a` is transposed before multiplication. |\n| `adjoint_a` | If `True`, `a` is conjugated and transposed before multiplication. |\n| `a_is_sparse` | If `True`, `a` is treated as a sparse matrix. |\n| `b_is_sparse` | If `True`, `b` is treated as a sparse matrix. |\n| `name` | Name for the operation (optional). |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|--------|----------------------------------------------------------|\n| A `Tensor` of the same type as `a` and `b` where each inner-most vector is the product of the corresponding matrices in `a` and vectors in `b`, e.g. if all transpose or adjoint attributes are `False`: \u003cbr /\u003e `output`\\[..., i\\] = sum_k (`a`\\[..., i, k\\] \\* `b`\\[..., k\\]), for all indices i. ||\n| `Note` | This is matrix-vector product, not element-wise product. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------------------------|\n| `ValueError` | If transpose_a and adjoint_a are both set to True. |\n\n\u003cbr /\u003e"]]