tf.linalg.set_diag
Stay organized with collections
Save and categorize content based on your preferences.
Returns a batched matrix tensor with new batched diagonal values.
tf.linalg.set_diag(
input, diagonal, name='set_diag', k=0
)
Given input
and diagonal
, this operation returns a tensor with the
same shape and values as input
, except for the specified diagonals of the
innermost matrices. These will be overwritten by the values in diagonal
.
input
has r+1
dimensions [I, J, ..., L, M, N]
. When k
is scalar or
k[0] == k[1]
, diagonal
has r
dimensions [I, J, ..., L, max_diag_len]
.
Otherwise, it has r+1
dimensions [I, J, ..., L, num_diags, max_diag_len]
.
num_diags
is the number of diagonals, num_diags = k[1] - k[0] + 1
.
max_diag_len
is the longest diagonal in the range [k[0], k[1]]
,
max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))
The output is a tensor of rank k+1
with dimensions [I, J, ..., L, M, N]
.
If k
is scalar or k[0] == k[1]
:
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]
output[i, j, ..., l, m, n] ; otherwise
Otherwise,
output[i, j, ..., l, m, n]
= diagonal[i, j, ..., l, k[1]-d, n-max(d, 0)] ; if d_lower <= d <= d_upper
input[i, j, ..., l, m, n] ; otherwise
where d = n - m
For example:
# The main diagonal.
input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)
[7, 7, 7, 7],
[7, 7, 7, 7]],
[[7, 7, 7, 7],
[7, 7, 7, 7],
[7, 7, 7, 7]]])
diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)
[4, 5, 6]])
tf.matrix_diag(diagonal) ==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[7, 2, 7, 7],
[7, 7, 3, 7]],
[[4, 7, 7, 7],
[7, 5, 7, 7],
[7, 7, 6, 7]]]
# A superdiagonal (per batch).
tf.matrix_diag(diagonal, k = 1)
==> [[[7, 1, 7, 7], # Output shape: (2, 3, 4)
[7, 7, 2, 7],
[7, 7, 7, 3]],
[[7, 4, 7, 7],
[7, 7, 5, 7],
[7, 7, 7, 6]]]
# A band of diagonals.
diagonals = np.array([[[1, 2, 3], # Diagonal shape: (2, 2, 3)
[4, 5, 0]],
[[6, 1, 2],
[3, 4, 0]]])
tf.matrix_diag(diagonals, k = (-1, 0))
==> [[[1, 7, 7, 7], # Output shape: (2, 3, 4)
[4, 2, 7, 7],
[0, 5, 3, 7]],
[[6, 7, 7, 7],
[3, 1, 7, 7],
[7, 4, 2, 7]]]
Args |
input
|
A Tensor with rank k + 1 , where k >= 1 .
|
diagonal
|
A Tensor with rank k , when d_lower == d_upper , or k + 1 ,
otherwise. k >= 1 .
|
name
|
A name for the operation (optional).
|
k
|
Diagonal offset(s). Positive value means superdiagonal, 0 refers to the
main diagonal, and negative value means subdiagonals. k can be a single
integer (for a single diagonal) or a pair of integers specifying the low
and high ends of a matrix band. k[0] must not be larger than k[1] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.linalg.set_diag\n\n\u003cbr /\u003e\n\n|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/linalg/set_diag) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/ops/array_ops.py#L2200-L2299) |\n\nReturns a batched matrix tensor with new batched diagonal values.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.linalg.set_diag`](/api_docs/python/tf/linalg/set_diag), [`tf.compat.v1.matrix_set_diag`](/api_docs/python/tf/linalg/set_diag)\n\n\u003cbr /\u003e\n\n tf.linalg.set_diag(\n input, diagonal, name='set_diag', k=0\n )\n\nGiven `input` and `diagonal`, this operation returns a tensor with the\nsame shape and values as `input`, except for the specified diagonals of the\ninnermost matrices. These will be overwritten by the values in `diagonal`.\n\n`input` has `r+1` dimensions `[I, J, ..., L, M, N]`. When `k` is scalar or\n`k[0] == k[1]`, `diagonal` has `r` dimensions `[I, J, ..., L, max_diag_len]`.\nOtherwise, it has `r+1` dimensions `[I, J, ..., L, num_diags, max_diag_len]`.\n`num_diags` is the number of diagonals, `num_diags = k[1] - k[0] + 1`.\n`max_diag_len` is the longest diagonal in the range `[k[0], k[1]]`,\n`max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))`\n\nThe output is a tensor of rank `k+1` with dimensions `[I, J, ..., L, M, N]`.\nIf `k` is scalar or `k[0] == k[1]`: \n\n output[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, n-max(k[1], 0)] ; if n - m == k[1]\n output[i, j, ..., l, m, n] ; otherwise\n\nOtherwise, \n\n output[i, j, ..., l, m, n]\n = diagonal[i, j, ..., l, k[1]-d, n-max(d, 0)] ; if d_lower \u003c= d \u003c= d_upper\n input[i, j, ..., l, m, n] ; otherwise\n\nwhere `d = n - m`\n\n#### For example:\n\n # The main diagonal.\n input = np.array([[[7, 7, 7, 7], # Input shape: (2, 3, 4)\n [7, 7, 7, 7],\n [7, 7, 7, 7]],\n [[7, 7, 7, 7],\n [7, 7, 7, 7],\n [7, 7, 7, 7]]])\n diagonal = np.array([[1, 2, 3], # Diagonal shape: (2, 3)\n [4, 5, 6]])\n tf.matrix_diag(diagonal) ==\u003e [[[1, 7, 7, 7], # Output shape: (2, 3, 4)\n [7, 2, 7, 7],\n [7, 7, 3, 7]],\n [[4, 7, 7, 7],\n [7, 5, 7, 7],\n [7, 7, 6, 7]]]\n\n # A superdiagonal (per batch).\n tf.matrix_diag(diagonal, k = 1)\n ==\u003e [[[7, 1, 7, 7], # Output shape: (2, 3, 4)\n [7, 7, 2, 7],\n [7, 7, 7, 3]],\n [[7, 4, 7, 7],\n [7, 7, 5, 7],\n [7, 7, 7, 6]]]\n\n # A band of diagonals.\n diagonals = np.array([[[1, 2, 3], # Diagonal shape: (2, 2, 3)\n [4, 5, 0]],\n [[6, 1, 2],\n [3, 4, 0]]])\n tf.matrix_diag(diagonals, k = (-1, 0))\n ==\u003e [[[1, 7, 7, 7], # Output shape: (2, 3, 4)\n [4, 2, 7, 7],\n [0, 5, 3, 7]],\n [[6, 7, 7, 7],\n [3, 1, 7, 7],\n [7, 4, 2, 7]]]\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `input` | A `Tensor` with rank `k + 1`, where `k \u003e= 1`. |\n| `diagonal` | A `Tensor` with rank `k`, when `d_lower == d_upper`, or `k + 1`, otherwise. `k \u003e= 1`. |\n| `name` | A name for the operation (optional). |\n| `k` | Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`. |\n\n\u003cbr /\u003e"]]