|  TensorFlow 1 version |  View source on GitHub | 
Compute the cumulative sum of the tensor x along axis.
tf.math.cumsum(
    x, axis=0, exclusive=False, reverse=False, name=None
)
By default, this op performs an inclusive cumsum, which means that the first element of the input is identical to the first element of the output:
tf.cumsum([a, b, c])  # [a, a + b, a + b + c]
By setting the exclusive kwarg to True, an exclusive cumsum is performed
instead:
tf.cumsum([a, b, c], exclusive=True)  # [0, a, a + b]
By setting the reverse kwarg to True, the cumsum is performed in the
opposite direction:
tf.cumsum([a, b, c], reverse=True)  # [a + b + c, b + c, c]
This is more efficient than using separate tf.reverse ops.
The reverse and exclusive kwargs can also be combined:
tf.cumsum([a, b, c], exclusive=True, reverse=True)  # [b + c, c, 0]
| Args | |
|---|---|
| x | A Tensor. Must be one of the following types:float32,float64,int64,int32,uint8,uint16,int16,int8,complex64,complex128,qint8,quint8,qint32,half. | 
| axis | A Tensorof typeint32(default: 0). Must be in the range[-rank(x), rank(x)). | 
| exclusive | If True, perform exclusive cumsum. | 
| reverse | A bool(default: False). | 
| name | A name for the operation (optional). | 
| Returns | |
|---|---|
| A Tensor. Has the same type asx. |