tf.nn.erosion2d
Stay organized with collections
Save and categorize content based on your preferences.
Computes the grayscale erosion of 4-D value
and 3-D filters
tensors.
tf.nn.erosion2d(
value, filters, strides, padding, data_format, dilations, name=None
)
The value
tensor has shape [batch, in_height, in_width, depth]
and the
filters
tensor has shape [filters_height, filters_width, depth]
, i.e.,
each input channel is processed independently of the others with its own
structuring function. The output
tensor has shape
[batch, out_height, out_width, depth]
. The spatial dimensions of the
output tensor depend on the padding
algorithm. We currently only support the
default "NHWC" data_format
.
In detail, the grayscale morphological 2-D erosion is given by:
output[b, y, x, c] =
min_{dy, dx} value[b,
strides[1] * y - dilations[1] * dy,
strides[2] * x - dilations[2] * dx,
c] -
filters[dy, dx, c]
Duality: The erosion of value
by the filters
is equal to the negation of
the dilation of -value
by the reflected filters
.
Args |
value
|
A Tensor . 4-D with shape [batch, in_height, in_width, depth] .
|
filters
|
A Tensor . Must have the same type as value .
3-D with shape [filters_height, filters_width, depth] .
|
strides
|
A list of ints that has length >= 4 .
1-D of length 4. The stride of the sliding window for each dimension of
the input tensor. Must be: [1, stride_height, stride_width, 1] .
|
padding
|
A string from: "SAME", "VALID" .
The type of padding algorithm to use.
|
data_format
|
A string , only "NHWC" is currently supported.
|
dilations
|
A list of ints that has length >= 4 .
1-D of length 4. The input stride for atrous morphological dilation.
Must be: [1, rate_height, rate_width, 1] .
|
name
|
A name for the operation (optional). If not specified "erosion2d"
is used.
|
Returns |
A Tensor . Has the same type as value .
4-D with shape [batch, out_height, out_width, depth] .
|
Raises |
ValueError
|
If the value depth does not match filters ' shape, or if
padding is other than 'VALID' or 'SAME' .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.nn.erosion2d\n\n\u003cbr /\u003e\n\n|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 1 version](/versions/r1.15/api_docs/python/tf/nn/erosion2d) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v2.0.0/tensorflow/python/ops/nn_ops.py#L4743-L4809) |\n\nComputes the grayscale erosion of 4-D `value` and 3-D `filters` tensors. \n\n tf.nn.erosion2d(\n value, filters, strides, padding, data_format, dilations, name=None\n )\n\nThe `value` tensor has shape `[batch, in_height, in_width, depth]` and the\n`filters` tensor has shape `[filters_height, filters_width, depth]`, i.e.,\neach input channel is processed independently of the others with its own\nstructuring function. The `output` tensor has shape\n`[batch, out_height, out_width, depth]`. The spatial dimensions of the\noutput tensor depend on the `padding` algorithm. We currently only support the\ndefault \"NHWC\" `data_format`.\n\nIn detail, the grayscale morphological 2-D erosion is given by: \n\n output[b, y, x, c] =\n min_{dy, dx} value[b,\n strides[1] * y - dilations[1] * dy,\n strides[2] * x - dilations[2] * dx,\n c] -\n filters[dy, dx, c]\n\nDuality: The erosion of `value` by the `filters` is equal to the negation of\nthe dilation of `-value` by the reflected `filters`.\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Args ---- ||\n|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| `value` | A `Tensor`. 4-D with shape `[batch, in_height, in_width, depth]`. |\n| `filters` | A `Tensor`. Must have the same type as `value`. 3-D with shape `[filters_height, filters_width, depth]`. |\n| `strides` | A list of `ints` that has length `\u003e= 4`. 1-D of length 4. The stride of the sliding window for each dimension of the input tensor. Must be: `[1, stride_height, stride_width, 1]`. |\n| `padding` | A `string` from: `\"SAME\", \"VALID\"`. The type of padding algorithm to use. |\n| `data_format` | A `string`, only `\"NHWC\"` is currently supported. |\n| `dilations` | A list of `ints` that has length `\u003e= 4`. 1-D of length 4. The input stride for atrous morphological dilation. Must be: `[1, rate_height, rate_width, 1]`. |\n| `name` | A name for the operation (optional). If not specified \"erosion2d\" is used. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A `Tensor`. Has the same type as `value`. 4-D with shape `[batch, out_height, out_width, depth]`. ||\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Raises ------ ||\n|--------------|----------------------------------------------------------------------------------------------------------|\n| `ValueError` | If the `value` depth does not match `filters`' shape, or if padding is other than `'VALID'` or `'SAME'`. |\n\n\u003cbr /\u003e"]]