View source on GitHub |
This is the class from which all layers inherit.
Inherits From: Layer
, Operation
tf.keras.layers.InputLayer(
shape=None,
batch_size=None,
dtype=None,
sparse=None,
batch_shape=None,
input_tensor=None,
name=None,
**kwargs
)
Used in the notebooks
Used in the guide | Used in the tutorials |
---|---|
A layer is a callable object that takes as input one or more tensors and
that outputs one or more tensors. It involves computation, defined
in the call()
method, and a state (weight variables). State can be
created:
- in
__init__()
, for instance viaself.add_weight()
; - in the optional
build()
method, which is invoked by the first__call__()
to the layer, and supplies the shape(s) of the input(s), which may not have been known at initialization time.
Layers are recursively composable: If you assign a Layer instance as an
attribute of another Layer, the outer layer will start tracking the weights
created by the inner layer. Nested layers should be instantiated in the
__init__()
method or build()
method.
Users will just instantiate a layer and then treat it as a callable.
Args | |
---|---|
trainable
|
Boolean, whether the layer's variables should be trainable. |
name
|
String name of the layer. |
dtype
|
The dtype of the layer's computations and weights. Can also be a
keras.DTypePolicy ,
which allows the computation and
weight dtype to differ. Defaults to None . None means to use
keras.config.dtype_policy() ,
which is a float32 policy unless set to different value
(via keras.config.set_dtype_policy() ).
|
We recommend that descendants of Layer
implement the following methods:
__init__()
: Defines custom layer attributes, and creates layer weights that do not depend on input shapes, usingadd_weight()
, or other state.build(self, input_shape)
: This method can be used to create weights that depend on the shape(s) of the input(s), usingadd_weight()
, or other state.__call__()
will automatically build the layer (if it has not been built yet) by callingbuild()
.call(self, *args, **kwargs)
: Called in__call__
after making surebuild()
has been called.call()
performs the logic of applying the layer to the input arguments. Two reserved keyword arguments you can optionally use incall()
are: 1.training
(boolean, whether the call is in inference mode or training mode). 2.mask
(boolean tensor encoding masked timesteps in the input, used e.g. in RNN layers). A typical signature for this method iscall(self, inputs)
, and user could optionally addtraining
andmask
if the layer need them.get_config(self)
: Returns a dictionary containing the configuration used to initialize this layer. If the keys differ from the arguments in__init__()
, then overridefrom_config(self)
as well. This method is used when saving the layer or a model that contains this layer.
Examples:
Here's a basic example: a layer with two variables, w
and b
,
that returns y = w . x + b
.
It shows how to implement build()
and call()
.
Variables set as attributes of a layer are tracked as weights
of the layers (in layer.weights
).
class SimpleDense(Layer):
def __init__(self, units=32):
super().__init__()
self.units = units
# Create the state of the layer (weights)
def build(self, input_shape):
self.kernel = self.add_weight(
shape=(input_shape[-1], self.units),
initializer="glorot_uniform",
trainable=True,
name="kernel",
)
self.bias = self.add_weight(
shape=(self.units,),
initializer="zeros",
trainable=True,
name="bias",
)
# Defines the computation
def call(self, inputs):
return ops.matmul(inputs, self.kernel) + self.bias
# Instantiates the layer.
linear_layer = SimpleDense(4)
# This will also call `build(input_shape)` and create the weights.
y = linear_layer(ops.ones((2, 2)))
assert len(linear_layer.weights) == 2
# These weights are trainable, so they're listed in `trainable_weights`:
assert len(linear_layer.trainable_weights) == 2
Besides trainable weights, updated via backpropagation during training,
layers can also have non-trainable weights. These weights are meant to
be updated manually during call()
. Here's a example layer that computes
the running sum of its inputs:
class ComputeSum(Layer):
def __init__(self, input_dim):
super(ComputeSum, self).__init__()
# Create a non-trainable weight.
self.total = self.add_weight(
shape=(),
initializer="zeros",
trainable=False,
name="total",
)
def call(self, inputs):
self.total.assign(self.total + ops.sum(inputs))
return self.total
my_sum = ComputeSum(2)
x = ops.ones((2, 2))
y = my_sum(x)
assert my_sum.weights == [my_sum.total]
assert my_sum.non_trainable_weights == [my_sum.total]
assert my_sum.trainable_weights == []
Attributes | |
---|---|
name
|
The name of the layer (string). |
dtype
|
Dtype of the layer's weights. Alias of layer.variable_dtype .
|
variable_dtype
|
Dtype of the layer's weights. |
compute_dtype
|
The dtype of the layer's computations.
Layers automatically cast inputs to this dtype, which causes
the computations and output to also be in this dtype.
When mixed precision is used with a
keras.DTypePolicy , this will be different
than variable_dtype .
|
trainable_weights
|
List of variables to be included in backprop. |
non_trainable_weights
|
List of variables that should not be included in backprop. |
weights
|
The concatenation of the lists trainable_weights and non_trainable_weights (in this order). |
trainable
|
Whether the layer should be trained (boolean), i.e.
whether its potentially-trainable weights should be returned
as part of layer.trainable_weights .
|
input_spec
|
Optional (list of) InputSpec object(s) specifying the
constraints on inputs that can be accepted by the layer.
|
input
|
Retrieves the input tensor(s) of a symbolic operation.
Only returns the tensor(s) corresponding to the first time the operation was called. |
output
|
Retrieves the output tensor(s) of a layer.
Only returns the tensor(s) corresponding to the first time the operation was called. |
Methods
from_config
@classmethod
from_config( config )
Creates a layer from its config.
This method is the reverse of get_config
,
capable of instantiating the same layer from the config
dictionary. It does not handle layer connectivity
(handled by Network), nor weights (handled by set_weights
).
Args | |
---|---|
config
|
A Python dictionary, typically the output of get_config. |
Returns | |
---|---|
A layer instance. |
symbolic_call
symbolic_call(
*args, **kwargs
)