Normalizes along dimension axis
using an L2 norm. (deprecated arguments)
View aliases
Main aliases
tf.linalg.l2_normalize
, tf.nn.l2_normalize
See Migration guide for more details.
tf.compat.v1.linalg.l2_normalize
, tf.compat.v1.math.l2_normalize
, tf.compat.v1.nn.l2_normalize
tf.math.l2_normalize(
x, axis=None, epsilon=1e-12, name=None, dim=None
)
Used in the notebooks
Used in the tutorials |
---|
For a 1-D tensor with axis = 0
, computes
output = x / sqrt(max(sum(x**2), epsilon))
For x
with more dimensions, independently normalizes each 1-D slice along
dimension axis
.
1-D tensor example:
>>> x = tf.constant([3.0, 4.0])
>>> tf.math.l2_normalize(x).numpy()
array([0.6, 0.8], dtype=float32)
2-D tensor example:
>>> x = tf.constant([[3.0], [4.0]])
>>> tf.math.l2_normalize(x, 0).numpy()
array([[0.6],
[0.8]], dtype=float32)
x = tf.constant([[3.0], [4.0]])
tf.math.l2_normalize(x, 1).numpy()
array([[1.],
[1.]], dtype=float32)
Returns | |
---|---|
A Tensor with the same shape as x .
|