| Abs<T extends TNumber> | Computes the absolute value of a tensor. | 
| AccumulateN<T extends TType> | Returns the element-wise sum of a list of tensors. | 
| AccumulatorNumAccumulated | Returns the number of gradients aggregated in the given accumulators. | 
| AccumulatorTakeGradient<T extends TType> | Extracts the average gradient in the given ConditionalAccumulator. | 
| Acos<T extends TType> | Computes acos of x element-wise. | 
| Acosh<T extends TType> | Computes inverse hyperbolic cosine of x element-wise. | 
| Add<T extends TType> | Returns x + y element-wise. | 
| AddManySparseToTensorsMap | Add an `N`-minibatch `SparseTensor` to a `SparseTensorsMap`, return `N` handles. | 
| AddN<T extends TType> | Add all input tensors element wise. | 
| AddSparseToTensorsMap | Add a `SparseTensor` to a `SparseTensorsMap` return its handle. | 
| AdjustContrast<T extends TNumber> | Adjust the contrast of one or more images. | 
| AdjustHue<T extends TNumber> | Adjust the hue of one or more images. | 
| AdjustSaturation<T extends TNumber> | Adjust the saturation of one or more images. | 
| All | Computes the "logical and" of elements across dimensions of a tensor. | 
| AllReduce<T extends TNumber> | Mutually reduces multiple tensors of identical type and shape. | 
| AllToAll<T extends TType> | An Op to exchange data across TPU replicas. | 
| Angle<U extends TNumber> | Returns the argument of a complex number. | 
| Any | Computes the "logical or" of elements across dimensions of a tensor. | 
| ApplyAdaMax<T extends TType> | Update '*var' according to the AdaMax algorithm. | 
| ApplyAdadelta<T extends TType> | Update '*var' according to the adadelta scheme. | 
| ApplyAdagrad<T extends TType> | Update '*var' according to the adagrad scheme. | 
| ApplyAdagradDa<T extends TType> | Update '*var' according to the proximal adagrad scheme. | 
| ApplyAdagradV2<T extends TType> | Update '*var' according to the adagrad scheme. | 
| ApplyAdam<T extends TType> | Update '*var' according to the Adam algorithm. | 
| ApplyAddSign<T extends TType> | Update '*var' according to the AddSign update. | 
| ApplyCenteredRmsProp<T extends TType> | Update '*var' according to the centered RMSProp algorithm. | 
| ApplyFtrl<T extends TType> | Update '*var' according to the Ftrl-proximal scheme. | 
| ApplyGradientDescent<T extends TType> | Update '*var' by subtracting 'alpha' * 'delta' from it. | 
| ApplyMomentum<T extends TType> | Update '*var' according to the momentum scheme. | 
| ApplyPowerSign<T extends TType> | Update '*var' according to the AddSign update. | 
| ApplyProximalAdagrad<T extends TType> | Update '*var' and '*accum' according to FOBOS with Adagrad learning rate. | 
| ApplyProximalGradientDescent<T extends TType> | Update '*var' as FOBOS algorithm with fixed learning rate. | 
| ApplyRmsProp<T extends TType> | Update '*var' according to the RMSProp algorithm. | 
| ApproximateEqual | Returns the truth value of abs(x-y) < tolerance element-wise. | 
| ArgMax<V extends TNumber> | Returns the index with the largest value across dimensions of a tensor. | 
| ArgMin<V extends TNumber> | Returns the index with the smallest value across dimensions of a tensor. | 
| AsString | Converts each entry in the given tensor to strings. | 
| Asin<T extends TType> | Computes the trignometric inverse sine of x element-wise. | 
| Asinh<T extends TType> | Computes inverse hyperbolic sine of x element-wise. | 
| AssertCardinalityDataset |  | 
| AssertNextDataset |  | 
| Assign<T extends TType> | Update 'ref' by assigning 'value' to it. | 
| AssignAdd<T extends TType> | Update 'ref' by adding 'value' to it. | 
| AssignSub<T extends TType> | Update 'ref' by subtracting 'value' from it. | 
| Atan<T extends TType> | Computes the trignometric inverse tangent of x element-wise. | 
| Atan2<T extends TNumber> | Computes arctangent of `y/x` element-wise, respecting signs of the arguments. | 
| Atanh<T extends TType> | Computes inverse hyperbolic tangent of x element-wise. | 
| AudioSpectrogram | Produces a visualization of audio data over time. | 
| AudioSummary | Outputs a `Summary` protocol buffer with audio. | 
| AutoShardDataset | Creates a dataset that shards the input dataset. | 
| AvgPool<T extends TNumber> | Performs average pooling on the input. | 
| AvgPool3d<T extends TNumber> | Performs 3D average pooling on the input. | 
| AvgPool3dGrad<T extends TNumber> | Computes gradients of average pooling function. | 
| AvgPoolGrad<T extends TNumber> | Computes gradients of the average pooling function. | 
| BandPart<T extends TType> | Copy a tensor setting everything outside a central band in each innermost matrix to zero. | 
| BandedTriangularSolve<T extends TType> |  | 
| Barrier | Defines a barrier that persists across different graph executions. | 
| BarrierIncompleteSize | Computes the number of incomplete elements in the given barrier. | 
| BarrierReadySize | Computes the number of complete elements in the given barrier. | 
| BatchCholesky<T extends TNumber> |  | 
| BatchCholeskyGrad<T extends TNumber> |  | 
| BatchDataset | Creates a dataset that batches `batch_size` elements from `input_dataset`. | 
| BatchFft |  | 
| BatchFft2d |  | 
| BatchFft3d |  | 
| BatchIfft |  | 
| BatchIfft2d |  | 
| BatchIfft3d |  | 
| BatchMatMul<T extends TType> | Multiplies slices of two tensors in batches. | 
| BatchMatrixBandPart<T extends TType> |  | 
| BatchMatrixDeterminant<T extends TType> |  | 
| BatchMatrixDiag<T extends TType> |  | 
| BatchMatrixDiagPart<T extends TType> |  | 
| BatchMatrixInverse<T extends TNumber> |  | 
| BatchMatrixSetDiag<T extends TType> |  | 
| BatchMatrixSolve<T extends TNumber> |  | 
| BatchMatrixSolveLs<T extends TNumber> |  | 
| BatchMatrixTriangularSolve<T extends TNumber> |  | 
| BatchNormWithGlobalNormalization<T extends TType> | Batch normalization. | 
| BatchToSpace<T extends TType> | BatchToSpace for 4-D tensors of type T. | 
| BatchToSpaceNd<T extends TType> | BatchToSpace for N-D tensors of type T. | 
| BesselI0<T extends TNumber> |  | 
| BesselI0e<T extends TNumber> |  | 
| BesselI1<T extends TNumber> |  | 
| BesselI1e<T extends TNumber> |  | 
| BesselJ0<T extends TNumber> |  | 
| BesselJ1<T extends TNumber> |  | 
| BesselK0<T extends TNumber> |  | 
| BesselK0e<T extends TNumber> |  | 
| BesselK1<T extends TNumber> |  | 
| BesselK1e<T extends TNumber> |  | 
| BesselY0<T extends TNumber> |  | 
| BesselY1<T extends TNumber> |  | 
| Betainc<T extends TNumber> | Compute the regularized incomplete beta integral \\(I_x(a, b)\\). | 
| BiasAdd<T extends TType> | Adds `bias` to `value`. | 
| BiasAddGrad<T extends TType> | The backward operation for "BiasAdd" on the "bias" tensor. | 
| Bincount<T extends TNumber> | Counts the number of occurrences of each value in an integer array. | 
| Bitcast<U extends TType> | Bitcasts a tensor from one type to another without copying data. | 
| BitwiseAnd<T extends TNumber> | Elementwise computes the bitwise AND of `x` and `y`. | 
| BitwiseOr<T extends TNumber> | Elementwise computes the bitwise OR of `x` and `y`. | 
| BitwiseXor<T extends TNumber> | Elementwise computes the bitwise XOR of `x` and `y`. | 
| BoostedTreesAggregateStats | Aggregates the summary of accumulated stats for the batch. | 
| BoostedTreesCenterBias | Calculates the prior from the training data (the bias) and fills in the first node with the logits' prior. | 
| BoostedTreesEnsembleResourceHandleOp | Creates a handle to a BoostedTreesEnsembleResource | 
| BoostedTreesExampleDebugOutputs | Debugging/model interpretability outputs for each example. | 
| BoostedTreesMakeStatsSummary | Makes the summary of accumulated stats for the batch. | 
| BoostedTreesPredict | Runs multiple additive regression ensemble predictors on input instances and 
 computes the logits.  | 
| BoostedTreesQuantileStreamResourceHandleOp | Creates a handle to a BoostedTreesQuantileStreamResource. | 
| BroadcastDynamicShape<T extends TNumber> | Return the shape of s0 op s1 with broadcast. | 
| BroadcastRecv<T extends TType> | Receives a tensor value broadcast from another device. | 
| BroadcastSend<T extends TType> | Broadcasts a tensor value to one or more other devices. | 
| BroadcastTo<T extends TType> | Broadcast an array for a compatible shape. | 
| Bucketize | Bucketizes 'input' based on 'boundaries'. | 
| BytesProducedStatsDataset | Records the bytes size of each element of `input_dataset` in a StatsAggregator. | 
| CSRSparseMatrixToDense<T extends TType> | Convert a (possibly batched) CSRSparseMatrix to dense. | 
| CSVDataset |  | 
| CSVDatasetV2 |  | 
| CacheDataset | Creates a dataset that caches elements from `input_dataset`. | 
| CacheDatasetV2 |  | 
| Cast<U extends TType> | Cast x of type SrcT to y of DstT. | 
| Ceil<T extends TNumber> | Returns element-wise smallest integer not less than x. | 
| CheckNumerics<T extends TNumber> | Checks a tensor for NaN, -Inf and +Inf values. | 
| Cholesky<T extends TType> | Computes the Cholesky decomposition of one or more square matrices. | 
| CholeskyGrad<T extends TNumber> | Computes the reverse mode backpropagated gradient of the Cholesky algorithm. | 
| ChooseFastestDataset |  | 
| ClipByValue<T extends TType> | Clips tensor values to a specified min and max. | 
| ClusterOutput<T extends TType> | Operator that connects the output of an XLA computation to other consumer graph nodes. | 
| CollectiveGather<T extends TNumber> | Mutually accumulates multiple tensors of identical type and shape. | 
| CollectivePermute<T extends TType> | An Op to permute tensors across replicated TPU instances. | 
| CompareAndBitpack | Compare values of `input` to `threshold` and pack resulting bits into a `uint8`. | 
| CompilationResult | Returns the result of a TPU compilation. | 
| Complex<U extends TType> | Converts two real numbers to a complex number. | 
| ComplexAbs<U extends TNumber> | Computes the complex absolute value of a tensor. | 
| CompressElement | Compresses a dataset element. | 
| ComputeBatchSize | Computes the static batch size of a dataset sans partial batches. | 
| Concat<T extends TType> | Concatenates tensors along one dimension. | 
| ConcatenateDataset | Creates a dataset that concatenates `input_dataset` with `another_dataset`. | 
| ConditionalAccumulator | A conditional accumulator for aggregating gradients. | 
| ConfigureDistributedTPU | Sets up the centralized structures for a distributed TPU system. | 
| Conj<T extends TType> | Returns the complex conjugate of a complex number. | 
| ConjugateTranspose<T extends TType> | Shuffle dimensions of x according to a permutation and conjugate the result. | 
| Constant<T extends TType> | An operator producing a constant value. | 
| Conv<T extends TType> | Wraps the XLA ConvGeneralDilated operator, documented at 
  https://www.tensorflow.org/performance/xla/operation_semantics#conv_convolution
 .  | 
| Conv2d<T extends TNumber> | Computes a 2-D convolution given 4-D `input` and `filter` tensors. | 
| Conv2dBackpropFilter<T extends TNumber> | Computes the gradients of convolution with respect to the filter. | 
| Conv2dBackpropInput<T extends TNumber> | Computes the gradients of convolution with respect to the input. | 
| Conv3d<T extends TNumber> | Computes a 3-D convolution given 5-D `input` and `filter` tensors. | 
| Conv3dBackpropFilter<T extends TNumber> | Computes the gradients of 3-D convolution with respect to the filter. | 
| Conv3dBackpropInput<U extends TNumber> | Computes the gradients of 3-D convolution with respect to the input. | 
| Copy<T extends TType> | Copy a tensor from CPU-to-CPU or GPU-to-GPU. | 
| CopyHost<T extends TType> | Copy a tensor to host. | 
| Cos<T extends TType> | Computes cos of x element-wise. | 
| Cosh<T extends TType> | Computes hyperbolic cosine of x element-wise. | 
| CountUpTo<T extends TNumber> | Increments 'ref' until it reaches 'limit'. | 
| CropAndResize | Extracts crops from the input image tensor and resizes them. | 
| CropAndResizeGradBoxes | Computes the gradient of the crop_and_resize op wrt the input boxes tensor. | 
| CropAndResizeGradImage<T extends TNumber> | Computes the gradient of the crop_and_resize op wrt the input image tensor. | 
| Cross<T extends TNumber> | Compute the pairwise cross product. | 
| CrossReplicaSum<T extends TNumber> | An Op to sum inputs across replicated TPU instances. | 
| CudnnRNNCanonicalToParams<T extends TNumber> | Converts CudnnRNN params from canonical form to usable form. | 
| CudnnRnnParamsSize<U extends TNumber> | Computes size of weights that can be used by a Cudnn RNN model. | 
| Cumprod<T extends TType> | Compute the cumulative product of the tensor `x` along `axis`. | 
| Cumsum<T extends TType> | Compute the cumulative sum of the tensor `x` along `axis`. | 
| CumulativeLogsumexp<T extends TNumber> | Compute the cumulative product of the tensor `x` along `axis`. | 
| DataFormatDimMap<T extends TNumber> | Returns the dimension index in the destination data format given the one in 
 the source data format.  | 
| DataFormatVecPermute<T extends TNumber> | Permute input tensor from `src_format` to `dst_format`. | 
| DataServiceDataset |  | 
| DatasetCardinality | Returns the cardinality of `input_dataset`. | 
| DatasetFromGraph | Creates a dataset from the given `graph_def`. | 
| DatasetToGraph | Returns a serialized GraphDef representing `input_dataset`. | 
| Dawsn<T extends TNumber> |  | 
| DebugGradientIdentity<T extends TType> | Identity op for gradient debugging. | 
| DebugGradientRefIdentity<T extends TType> | Identity op for gradient debugging. | 
| DebugIdentity<T extends TType> | Debug Identity V2 Op. | 
| DebugNanCount | Debug NaN Value Counter Op. | 
| DebugNumericsSummary<U extends TNumber> | Debug Numeric Summary V2 Op. | 
| DecodeAndCropJpeg | Decode and Crop a JPEG-encoded image to a uint8 tensor. | 
| DecodeBase64 | Decode web-safe base64-encoded strings. | 
| DecodeBmp | Decode the first frame of a BMP-encoded image to a uint8 tensor. | 
| DecodeCompressed | Decompress strings. | 
| DecodeGif | Decode the frame(s) of a GIF-encoded image to a uint8 tensor. | 
| DecodeImage<T extends TNumber> | Function for decode_bmp, decode_gif, decode_jpeg, and decode_png. | 
| DecodeJpeg | Decode a JPEG-encoded image to a uint8 tensor. | 
| DecodeJsonExample | Convert JSON-encoded Example records to binary protocol buffer strings. | 
| DecodePaddedRaw<T extends TNumber> | Reinterpret the bytes of a string as a vector of numbers. | 
| DecodePng<T extends TNumber> | Decode a PNG-encoded image to a uint8 or uint16 tensor. | 
| DecodeRaw<T extends TType> | Reinterpret the bytes of a string as a vector of numbers. | 
| DeepCopy<T extends TType> | Makes a copy of `x`. | 
| DenseBincount<U extends TNumber> | Counts the number of occurrences of each value in an integer array. | 
| DenseToCSRSparseMatrix | Converts a dense tensor to a (possibly batched) CSRSparseMatrix. | 
| DenseToSparseBatchDataset | Creates a dataset that batches input elements into a SparseTensor. | 
| DepthToSpace<T extends TType> | DepthToSpace for tensors of type T. | 
| DepthwiseConv2dNative<T extends TNumber> | Computes a 2-D depthwise convolution given 4-D `input` and `filter` tensors. | 
| DepthwiseConv2dNativeBackpropFilter<T extends TNumber> | Computes the gradients of depthwise convolution with respect to the filter. | 
| DepthwiseConv2dNativeBackpropInput<T extends TNumber> | Computes the gradients of depthwise convolution with respect to the input. | 
| Dequantize | Takes the packed uint32 input and unpacks the input to uint8 to do 
 Dequantization on device.  | 
| DestroyTemporaryVariable<T extends TType> | Destroys the temporary variable and returns its final value. | 
| Det<T extends TType> | Computes the determinant of one or more square matrices. | 
| DeviceIndex | Return the index of device the op runs. | 
| Digamma<T extends TNumber> | Computes Psi, the derivative of Lgamma (the log of the absolute value of 
 `Gamma(x)`), element-wise.  | 
| Dilation2d<T extends TNumber> | Computes the grayscale dilation of 4-D `input` and 3-D `filter` tensors. | 
| Dilation2dBackpropFilter<T extends TNumber> | Computes the gradient of morphological 2-D dilation with respect to the filter. | 
| Dilation2dBackpropInput<T extends TNumber> | Computes the gradient of morphological 2-D dilation with respect to the input. | 
| DirectedInterleaveDataset | A substitute for `InterleaveDataset` on a fixed list of `N` datasets. | 
| Div<T extends TType> | Returns x / y element-wise. | 
| DivNoNan<T extends TType> | Returns 0 if the denominator is zero. | 
| Dot<T extends TType> | Wraps the XLA DotGeneral operator, documented at 
  https://www.tensorflow.org/performance/xla/operation_semantics#dotgeneral
 .  | 
| DrawBoundingBoxes<T extends TNumber> | Draw bounding boxes on a batch of images. | 
| DummyIterationCounter |  | 
| DummyMemoryCache |  | 
| DummySeedGenerator |  | 
| DynamicSlice<T extends TType> | Wraps the XLA DynamicSlice operator, documented at 
  https://www.tensorflow.org/performance/xla/operation_semantics#dynamicslice
 .  | 
| DynamicStitch<T extends TType> | Interleave the values from the `data` tensors into a single tensor. | 
| DynamicUpdateSlice<T extends TType> | Wraps the XLA DynamicUpdateSlice operator, documented at 
  https://www.tensorflow.org/performance/xla/operation_semantics#dynamicupdateslice
 .  | 
| EditDistance | Computes the (possibly normalized) Levenshtein Edit Distance. | 
| Einsum<T extends TType> | An op which supports basic einsum op with 2 inputs and 1 output. | 
| Elu<T extends TNumber> | Computes exponential linear: `exp(features) - 1` if < 0, `features` otherwise. | 
| EluGrad<T extends TNumber> | Computes gradients for the exponential linear (Elu) operation. | 
| EmbeddingActivations | An op enabling differentiation of TPU Embeddings. | 
| Empty<T extends TType> | Creates a tensor with the given shape. | 
| EmptyTensorList | Creates and returns an empty tensor list. | 
| EmptyTensorMap | Creates and returns an empty tensor map. | 
| EncodeBase64 | Encode strings into web-safe base64 format. | 
| EncodeJpeg | JPEG-encode an image. | 
| EncodeJpegVariableQuality | JPEG encode input image with provided compression quality. | 
| EncodePng | PNG-encode an image. | 
| EncodeProto | The op serializes protobuf messages provided in the input tensors. | 
| EncodeWav | Encode audio data using the WAV file format. | 
| EnsureShape<T extends TType> | Ensures that the tensor's shape matches the expected shape. | 
| Enter<T extends TType> | Creates or finds a child frame, and makes `data` available to the child frame. | 
| Equal | Returns the truth value of (x == y) element-wise. | 
| Erf<T extends TNumber> | Computes the Gauss error function of `x` element-wise. | 
| Erfc<T extends TNumber> | Computes the complementary error function of `x` element-wise. | 
| EuclideanNorm<T extends TType> | Computes the euclidean norm of elements across dimensions of a tensor. | 
| Exit<T extends TType> | Exits the current frame to its parent frame. | 
| Exp<T extends TType> | Computes exponential of x element-wise. | 
| ExpandDims<T extends TType> | Inserts a dimension of 1 into a tensor's shape. | 
| Expint<T extends TNumber> |  | 
| Expm1<T extends TType> | Computes `exp(x) - 1` element-wise. | 
| ExtractGlimpse | Extracts a glimpse from the input tensor. | 
| ExtractImagePatches<T extends TType> | Extract `patches` from `images` and put them in the "depth" output dimension. | 
| ExtractJpegShape<T extends TNumber> | Extract the shape information of a JPEG-encoded image. | 
| ExtractVolumePatches<T extends TNumber> | Extract `patches` from `input` and put them in the `"depth"` output dimension. | 
| Fact | Output a fact about factorials. | 
| FakeQuantWithMinMaxArgs | Fake-quantize the 'inputs' tensor, type float to 'outputs' tensor of same type. | 
| FakeQuantWithMinMaxArgsGradient | Compute gradients for a FakeQuantWithMinMaxArgs operation. | 
| FakeQuantWithMinMaxVars | Fake-quantize the 'inputs' tensor of type float via global float scalars 
 Fake-quantize the `inputs` tensor of type float via global float scalars
 `min` and `max` to `outputs` tensor of same shape as `inputs`.  | 
| FakeQuantWithMinMaxVarsPerChannel | Fake-quantize the 'inputs' tensor of type float via per-channel floats 
 Fake-quantize the `inputs` tensor of type float per-channel and one of the
 shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max`
 of shape `[d]` to `outputs` tensor of same shape as `inputs`.  | 
| Fft<T extends TType> | Fast Fourier transform. | 
| Fft2d<T extends TType> | 2D fast Fourier transform. | 
| Fft3d<T extends TType> | 3D fast Fourier transform. | 
| FifoQueue | A queue that produces elements in first-in first-out order. | 
| Fill<U extends TType> | Creates a tensor filled with a scalar value. | 
| FilterByLastComponentDataset | Creates a dataset containing elements of first component of `input_dataset` having true in the last component. | 
| Fingerprint | Generates fingerprint values. | 
| FixedLengthRecordDataset |  | 
| FixedLengthRecordReader | A Reader that outputs fixed-length records from a file. | 
| Floor<T extends TNumber> | Returns element-wise largest integer not greater than x. | 
| FloorDiv<T extends TType> | Returns x // y element-wise. | 
| FloorMod<T extends TNumber> | Returns element-wise remainder of division. | 
| FractionalAvgPoolGrad<T extends TNumber> | Computes gradient of the FractionalAvgPool function. | 
| FractionalMaxPoolGrad<T extends TNumber> | Computes gradient of the FractionalMaxPool function. | 
| FresnelCos<T extends TNumber> |  | 
| FresnelSin<T extends TNumber> |  | 
| FusedPadConv2d<T extends TNumber> | Performs a padding as a preprocess during a convolution. | 
| FusedResizeAndPadConv2d<T extends TNumber> | Performs a resize and padding as a preprocess during a convolution. | 
| Gather<T extends TType> | Wraps the XLA Gather operator documented at 
   https://www.tensorflow.org/xla/operation_semantics#gather  | 
| GatherNd<T extends TType> | Gather slices from `params` into a Tensor with shape specified by `indices`. | 
| GatherV2<T extends TNumber> | Mutually accumulates multiple tensors of identical type and shape. | 
| GetSessionHandle | Store the input tensor in the state of the current session. | 
| GetSessionTensor<T extends TType> | Get the value of the tensor specified by its handle. | 
| Greater | Returns the truth value of (x > y) element-wise. | 
| GreaterEqual | Returns the truth value of (x >= y) element-wise. | 
| GuaranteeConst<T extends TType> | Gives a guarantee to the TF runtime that the input tensor is a constant. | 
| HashTable | Creates a non-initialized hash table. | 
| HistogramFixedWidth<U extends TNumber> | Return histogram of values. | 
| HistogramSummary | Outputs a `Summary` protocol buffer with a histogram. | 
| HsvToRgb<T extends TNumber> | Convert one or more images from HSV to RGB. | 
| Identity<T extends TType> | Return a tensor with the same shape and contents as the input tensor or value. | 
| IdentityReader | A Reader that outputs the queued work as both the key and value. | 
| Ifft<T extends TType> | Inverse fast Fourier transform. | 
| Ifft2d<T extends TType> | Inverse 2D fast Fourier transform. | 
| Ifft3d<T extends TType> | Inverse 3D fast Fourier transform. | 
| Igamma<T extends TNumber> | Compute the lower regularized incomplete Gamma function `P(a, x)`. | 
| IgammaGradA<T extends TNumber> | Computes the gradient of `igamma(a, x)` wrt `a`. | 
| Igammac<T extends TNumber> | Compute the upper regularized incomplete Gamma function `Q(a, x)`. | 
| IgnoreErrorsDataset | Creates a dataset that contains the elements of `input_dataset` ignoring errors. | 
| Imag<U extends TNumber> | Returns the imaginary part of a complex number. | 
| ImageProjectiveTransformV2<T extends TNumber> | Applies the given transform to each of the images. | 
| ImageProjectiveTransformV3<T extends TNumber> | Applies the given transform to each of the images. | 
| ImageSummary | Outputs a `Summary` protocol buffer with images. | 
| ImmutableConst<T extends TType> | Returns immutable tensor from memory region. | 
| InTopK | Says whether the targets are in the top `K` predictions. | 
| InfeedDequeue<T extends TType> | A placeholder op for a value that will be fed into the computation. | 
| InplaceAdd<T extends TType> | Adds v into specified rows of x. | 
| InplaceSub<T extends TType> | Subtracts `v` into specified rows of `x`. | 
| InplaceUpdate<T extends TType> | Updates specified rows 'i' with values 'v'. | 
| Inv<T extends TType> | Computes the inverse of one or more square invertible matrices or their adjoints (conjugate transposes). | 
| InvGrad<T extends TType> | Computes the gradient for the inverse of `x` wrt its input. | 
| Invert<T extends TNumber> | Invert (flip) each bit of supported types; for example, type `uint8` value 01010101 becomes 10101010. | 
| InvertPermutation<T extends TNumber> | Computes the inverse permutation of a tensor. | 
| Irfft<U extends TNumber> | Inverse real-valued fast Fourier transform. | 
| Irfft2d<U extends TNumber> | Inverse 2D real-valued fast Fourier transform. | 
| Irfft3d<U extends TNumber> | Inverse 3D real-valued fast Fourier transform. | 
| IsBoostedTreesEnsembleInitialized | Checks whether a tree ensemble has been initialized. | 
| IsBoostedTreesQuantileStreamResourceInitialized | Checks whether a quantile stream has been initialized. | 
| IsFinite | Returns which elements of x are finite. | 
| IsInf | Returns which elements of x are Inf. | 
| IsNan | Returns which elements of x are NaN. | 
| IsVariableInitialized | Checks whether a tensor has been initialized. | 
| Iterator |  | 
| IteratorFromStringHandle |  | 
| IteratorGetDevice | Returns the name of the device on which `resource` has been placed. | 
| IteratorGetNextAsOptional | Gets the next output from the given iterator as an Optional variant. | 
| IteratorToStringHandle | Converts the given `resource_handle` representing an iterator to a string. | 
| Join | Joins the strings in the given list of string tensors into one tensor; 
 with the given separator (default is an empty separator).  | 
| KMC2ChainInitialization | Returns the index of a data point that should be added to the seed set. | 
| KmeansPlusPlusInitialization | Selects num_to_sample rows of input using the KMeans++ criterion. | 
| KthOrderStatistic | Computes the Kth order statistic of a data set. | 
| L2Loss<T extends TNumber> | L2 Loss. | 
| LMDBDataset | Creates a dataset that emits the key-value pairs in one or more LMDB files. | 
| LatencyStatsDataset | Records the latency of producing `input_dataset` elements in a StatsAggregator. | 
| LeakyRelu<T extends TNumber> | Computes rectified linear: `max(features, features * alpha)`. | 
| LeakyReluGrad<T extends TNumber> | Computes rectified linear gradients for a LeakyRelu operation. | 
| LeftShift<T extends TNumber> | Elementwise computes the bitwise left-shift of `x` and `y`. | 
| Less | Returns the truth value of (x < y) element-wise. | 
| LessEqual | Returns the truth value of (x <= y) element-wise. | 
| Lgamma<T extends TNumber> | Computes the log of the absolute value of `Gamma(x)` element-wise. | 
| LinSpace<T extends TNumber> | Generates values in an interval. | 
| LmdbDataset |  | 
| LmdbReader | A Reader that outputs the records from a LMDB file. | 
| LoadAndRemapMatrix | Loads a 2-D (matrix) `Tensor` with name `old_tensor_name` from the checkpoint 
 at `ckpt_path` and potentially reorders its rows and columns using the
 specified remappings.  | 
| LocalResponseNormalization<T extends TNumber> | Local Response Normalization. | 
| LocalResponseNormalizationGrad<T extends TNumber> | Gradients for Local Response Normalization. | 
| Log<T extends TType> | Computes natural logarithm of x element-wise. | 
| Log1p<T extends TType> | Computes natural logarithm of (1 + x) element-wise. | 
| LogSoftmax<T extends TNumber> | Computes log softmax activations. | 
| LogicalAnd | Returns the truth value of x AND y element-wise. | 
| LogicalNot | Returns the truth value of `NOT x` element-wise. | 
| LogicalOr | Returns the truth value of x OR y element-wise. | 
| LookupTableFind<U extends TType> | Looks up keys in a table, outputs the corresponding values. | 
| LookupTableSize | Computes the number of elements in the given table. | 
| LoopCond | Forwards the input to the output. | 
| Lower | Converts all uppercase characters into their respective lowercase replacements. | 
| LowerBound<U extends TNumber> | Applies lower_bound(sorted_search_values, values) along each row. | 
| MakeUnique | Make all elements in the non-Batch dimension unique, but \"close\" to 
 their initial value.  | 
| MapIncompleteSize | Op returns the number of incomplete elements in the underlying container. | 
| MapSize | Op returns the number of elements in the underlying container. | 
| MatMul<T extends TType> | Multiply the matrix "a" by the matrix "b". | 
| MatchingFiles | Returns the set of files matching one or more glob patterns. | 
| MatchingFilesDataset |  | 
| MatrixDiag<T extends TType> | Returns a batched diagonal tensor with given batched diagonal values. | 
| MatrixDiagPart<T extends TType> | Returns the batched diagonal part of a batched tensor. | 
| MatrixDiagPartV3<T extends TType> | Returns the batched diagonal part of a batched tensor. | 
| MatrixDiagV3<T extends TType> | Returns a batched diagonal tensor with given batched diagonal values. | 
| MatrixLogarithm<T extends TType> | Computes the matrix logarithm of one or more square matrices: 
 
 \\(log(exp(A)) = A\\)
  
 This op is only defined for complex matrices.  | 
| MatrixSetDiag<T extends TType> | Returns a batched matrix tensor with new batched diagonal values. | 
| MatrixSolveLs<T extends TType> | Solves one or more linear least-squares problems. | 
| Max<T extends TType> | Computes the maximum of elements across dimensions of a tensor. | 
| MaxIntraOpParallelismDataset | Creates a dataset that overrides the maximum intra-op parallelism. | 
| MaxPool<T extends TType> | Performs max pooling on the input. | 
| MaxPool3d<T extends TNumber> | Performs 3D max pooling on the input. | 
| MaxPool3dGrad<U extends TNumber> | Computes gradients of 3D max pooling function. | 
| MaxPool3dGradGrad<T extends TNumber> | Computes second-order gradients of the maxpooling function. | 
| MaxPoolGrad<T extends TNumber> | Computes gradients of the maxpooling function. | 
| MaxPoolGradGrad<T extends TNumber> | Computes second-order gradients of the maxpooling function. | 
| MaxPoolGradGradWithArgmax<T extends TNumber> | Computes second-order gradients of the maxpooling function. | 
| MaxPoolGradWithArgmax<T extends TNumber> | Computes gradients of the maxpooling function. | 
| Maximum<T extends TNumber> | Returns the max of x and y (i.e. | 
| Mean<T extends TType> | Computes the mean of elements across dimensions of a tensor. | 
| MergeSummary | Merges summaries. | 
| Mfcc | Transforms a spectrogram into a form that's useful for speech recognition. | 
| Min<T extends TType> | Computes the minimum of elements across dimensions of a tensor. | 
| Minimum<T extends TNumber> | Returns the min of x and y (i.e. | 
| MirrorPad<T extends TType> | Pads a tensor with mirrored values. | 
| MirrorPadGrad<T extends TType> | Gradient op for `MirrorPad` op. | 
| Mod<T extends TNumber> | Returns element-wise remainder of division. | 
| ModelDataset | Identity transformation that models performance. | 
| Mul<T extends TType> | Returns x * y element-wise. | 
| MulNoNan<T extends TType> | Returns x * y element-wise. | 
| MultiDeviceIterator | Creates a MultiDeviceIterator resource. | 
| MultiDeviceIteratorFromStringHandle | Generates a MultiDeviceIterator resource from its provided string handle. | 
| MultiDeviceIteratorInit | Initializes the multi device iterator with the given dataset. | 
| MultiDeviceIteratorToStringHandle | Produces a string handle for the given MultiDeviceIterator. | 
| Multinomial<U extends TNumber> | Draws samples from a multinomial distribution. | 
| MutableDenseHashTable | Creates an empty hash table that uses tensors as the backing store. | 
| MutableHashTable | Creates an empty hash table. | 
| MutableHashTableOfTensors | Creates an empty hash table. | 
| Mutex | Creates a Mutex resource that can be locked by `MutexLock`. | 
| MutexLock | Locks a mutex resource. | 
| NcclAllReduce<T extends TNumber> | Outputs a tensor containing the reduction across all input tensors. | 
| NcclBroadcast<T extends TNumber> | Sends `input` to all devices that are connected to the output. | 
| NcclReduce<T extends TNumber> | Reduces `input` from `num_devices` using `reduction` to a single device. | 
| Ndtri<T extends TNumber> |  | 
| Neg<T extends TType> | Computes numerical negative value element-wise. | 
| NextAfter<T extends TNumber> | Returns the next representable value of `x1` in the direction of `x2`, element-wise. | 
| NextIteration<T extends TType> | Makes its input available to the next iteration. | 
| NonDeterministicInts<U extends TType> | Non-deterministically generates some integers. | 
| NonMaxSuppressionWithOverlaps | Greedily selects a subset of bounding boxes in descending order of score, 
 pruning away boxes that have high overlaps
 with previously selected boxes.  | 
| NonSerializableDataset |  | 
| NotEqual | Returns the truth value of (x != y) element-wise. | 
| NthElement<T extends TNumber> | Finds values of the `n`-th order statistic for the last dimension. | 
| OneHot<U extends TType> | Returns a one-hot tensor. | 
| Ones<T extends TType> | An operator creating a constant initialized with ones of the shape given by `dims`. | 
| OnesLike<T extends TType> | Returns a tensor of ones with the same shape and type as x. | 
| OptimizeDataset | Creates a dataset by applying optimizations to `input_dataset`. | 
| OptimizeDatasetV2 | Creates a dataset by applying related optimizations to `input_dataset`. | 
| OptionalFromValue | Constructs an Optional variant from a tuple of tensors. | 
| OptionalHasValue | Returns true if and only if the given Optional variant has a value. | 
| OptionalNone | Creates an Optional variant with no value. | 
| OrderedMapIncompleteSize | Op returns the number of incomplete elements in the underlying container. | 
| OrderedMapSize | Op returns the number of elements in the underlying container. | 
| OrdinalSelector | A TPU core selector Op. | 
| OutfeedDequeue<T extends TType> | Retrieves a single tensor from the computation outfeed. | 
| OutfeedDequeueV2<T extends TType> | Retrieves a single tensor from the computation outfeed. | 
| Output<T extends TType> | A symbolic handle to a tensor produced by an Operation. | 
| Pad<T extends TType> | Wraps the XLA Pad operator, documented at 
  https://www.tensorflow.org/performance/xla/operation_semantics#pad
 .  | 
| PaddedBatchDataset | Creates a dataset that batches and pads `batch_size` elements from the input. | 
| PaddingFifoQueue | A queue that produces elements in first-in first-out order. | 
| ParallelConcat<T extends TType> | Concatenates a list of `N` tensors along the first dimension. | 
| ParallelDynamicStitch<T extends TType> | Interleave the values from the `data` tensors into a single tensor. | 
| ParameterizedTruncatedNormal<U extends TNumber> | Outputs random values from a normal distribution. | 
| ParseExampleDataset | Transforms `input_dataset` containing `Example` protos as vectors of DT_STRING into a dataset of `Tensor` or `SparseTensor` objects representing the parsed features. | 
| ParseTensor<T extends TType> | Transforms a serialized tensorflow.TensorProto proto into a Tensor. | 
| PartitionedInput<T extends TType> | An op that groups a list of partitioned inputs together. | 
| Placeholder<T extends TType> | A placeholder op for a value that will be fed into the computation. | 
| PlaceholderWithDefault<T extends TType> | A placeholder op that passes through `input` when its output is not fed. | 
| Polygamma<T extends TNumber> | Compute the polygamma function \\(\psi^{(n)}(x)\\). | 
| PopulationCount | Computes element-wise population count (a.k.a. | 
| Pow<T extends TType> | Computes the power of one value to another. | 
| PrefetchDataset | Creates a dataset that asynchronously prefetches elements from `input_dataset`. | 
| Prelinearize | An op which linearizes one Tensor value to an opaque variant tensor. | 
| PrelinearizeTuple | An op which linearizes multiple Tensor values to an opaque variant tensor. | 
| PreventGradient<T extends TType> | An identity op that triggers an error if a gradient is requested. | 
| PriorityQueue | A queue that produces elements sorted by the first component value. | 
| PrivateThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
| Prod<T extends TType> | Computes the product of elements across dimensions of a tensor. | 
| QuantizeAndDequantize<T extends TNumber> | Quantizes then dequantizes a tensor. | 
| QuantizeAndDequantizeV3<T extends TNumber> | Quantizes then dequantizes a tensor. | 
| QuantizeAndDequantizeV4<T extends TNumber> | Returns the gradient of `quantization.QuantizeAndDequantizeV4`. | 
| QuantizedMatMulWithBiasAndDequantize<W extends TNumber> |  | 
| QueueIsClosed | Returns true if queue is closed. | 
| QueueSize | Computes the number of elements in the given queue. | 
| RaggedBincount<U extends TNumber> | Counts the number of occurrences of each value in an integer array. | 
| RaggedTensorToTensor<U extends TType> | Create a dense tensor from a ragged tensor, possibly altering its shape. | 
| RaggedTensorToVariant | Encodes a `RaggedTensor` into a `variant` Tensor. | 
| RaggedTensorToVariantGradient<U extends TType> | Helper used to compute the gradient for `RaggedTensorToVariant`. | 
| RandomCrop<T extends TNumber> | Randomly crop `image`. | 
| RandomDataset | Creates a Dataset that returns pseudorandom numbers. | 
| RandomGamma<U extends TNumber> | Outputs random values from the Gamma distribution(s) described by alpha. | 
| RandomGammaGrad<T extends TNumber> | Computes the derivative of a Gamma random sample w.r.t. | 
| RandomPoisson<V extends TNumber> | Outputs random values from the Poisson distribution(s) described by rate. | 
| RandomShuffle<T extends TType> | Randomly shuffles a tensor along its first dimension. | 
| RandomShuffleQueue | A queue that randomizes the order of elements. | 
| RandomStandardNormal<U extends TNumber> | Outputs random values from a normal distribution. | 
| RandomUniform<U extends TNumber> | Outputs random values from a uniform distribution. | 
| RandomUniformInt<U extends TNumber> | Outputs random integers from a uniform distribution. | 
| Range<T extends TNumber> | Creates a sequence of numbers. | 
| RangeDataset | Creates a dataset with a range of values. | 
| Rank | Returns the rank of a tensor. | 
| ReadFile | Reads and outputs the entire contents of the input filename. | 
| ReadVariableOp<T extends TType> | Reads the value of a variable. | 
| ReaderNumRecordsProduced | Returns the number of records this Reader has produced. | 
| ReaderNumWorkUnitsCompleted | Returns the number of work units this Reader has finished processing. | 
| ReaderSerializeState | Produce a string tensor that encodes the state of a Reader. | 
| Real<U extends TNumber> | Returns the real part of a complex number. | 
| RealDiv<T extends TType> | Returns x / y element-wise for real types. | 
| RebatchDataset | Creates a dataset that changes the batch size. | 
| RebatchDatasetV2 | Creates a dataset that changes the batch size. | 
| Reciprocal<T extends TType> | Computes the reciprocal of x element-wise. | 
| ReciprocalGrad<T extends TType> | Computes the gradient for the inverse of `x` wrt its input. | 
| RecordInput | Emits randomized records. | 
| Recv<T extends TType> | Receives the named tensor from another XLA computation. | 
| Reduce<T extends TNumber> | Mutually reduces multiple tensors of identical type and shape. | 
| ReduceAll | Computes the "logical and" of elements across dimensions of a tensor. | 
| ReduceAny | Computes the "logical or" of elements across dimensions of a tensor. | 
| ReduceJoin | Joins a string Tensor across the given dimensions. | 
| ReduceMax<T extends TType> | Computes the maximum of elements across dimensions of a tensor. | 
| ReduceMin<T extends TType> | Computes the minimum of elements across dimensions of a tensor. | 
| ReduceProd<T extends TType> | Computes the product of elements across dimensions of a tensor. | 
| ReduceSum<T extends TType> | Computes the sum of elements across dimensions of a tensor. | 
| ReduceV2<T extends TNumber> | Mutually reduces multiple tensors of identical type and shape. | 
| RefEnter<T extends TType> | Creates or finds a child frame, and makes `data` available to the child frame. | 
| RefExit<T extends TType> | Exits the current frame to its parent frame. | 
| RefIdentity<T extends TType> | Return the same ref tensor as the input ref tensor. | 
| RefNextIteration<T extends TType> | Makes its input available to the next iteration. | 
| RefSelect<T extends TType> | Forwards the `index`th element of `inputs` to `output`. | 
| RegexFullMatch | Check if the input matches the regex pattern. | 
| RegexReplace | Replaces matches of the `pattern` regular expression in `input` with the
 replacement string provided in `rewrite`. | 
| RegisterDataset | Registers a dataset with the tf.data service. | 
| Relu<T extends TType> | Computes rectified linear: `max(features, 0)`. | 
| Relu6<T extends TNumber> | Computes rectified linear 6: `min(max(features, 0), 6)`. | 
| Relu6Grad<T extends TNumber> | Computes rectified linear 6 gradients for a Relu6 operation. | 
| ReluGrad<T extends TNumber> | Computes rectified linear gradients for a Relu operation. | 
| RepeatDataset | Creates a dataset that emits the outputs of `input_dataset` `count` times. | 
| ReplicaId | Replica ID. | 
| ReplicatedInput<T extends TType> | Connects N inputs to an N-way replicated TPU computation. | 
| Reshape<T extends TType> | Reshapes a tensor. | 
| ResizeArea | Resize `images` to `size` using area interpolation. | 
| ResizeBicubic | Resize `images` to `size` using bicubic interpolation. | 
| ResizeBicubicGrad<T extends TNumber> | Computes the gradient of bicubic interpolation. | 
| ResizeBilinear | Resize `images` to `size` using bilinear interpolation. | 
| ResizeBilinearGrad<T extends TNumber> | Computes the gradient of bilinear interpolation. | 
| ResizeNearestNeighbor<T extends TNumber> | Resize `images` to `size` using nearest neighbor interpolation. | 
| ResizeNearestNeighborGrad<T extends TNumber> | Computes the gradient of nearest neighbor interpolation. | 
| ResourceAccumulatorNumAccumulated | Returns the number of gradients aggregated in the given accumulators. | 
| ResourceAccumulatorTakeGradient<T extends TType> | Extracts the average gradient in the given ConditionalAccumulator. | 
| ResourceConditionalAccumulator | A conditional accumulator for aggregating gradients. | 
| ResourceCountUpTo<T extends TNumber> | Increments variable pointed to by 'resource' until it reaches 'limit'. | 
| ResourceGather<U extends TType> | Gather slices from the variable pointed to by `resource` according to `indices`. | 
| ResourceGatherNd<U extends TType> |  | 
| RestoreSlice<T extends TType> | Restores a tensor from checkpoint files. | 
| RetrieveTPUEmbeddingStochasticGradientDescentParameters | Retrieve SGD embedding parameters. | 
| Reverse<T extends TType> | Reverses specific dimensions of a tensor. | 
| ReverseSequence<T extends TType> | Reverses variable length slices. | 
| Rfft<U extends TType> | Real-valued fast Fourier transform. | 
| Rfft2d<U extends TType> | 2D real-valued fast Fourier transform. | 
| Rfft3d<U extends TType> | 3D real-valued fast Fourier transform. | 
| RgbToHsv<T extends TNumber> | Converts one or more images from RGB to HSV. | 
| RightShift<T extends TNumber> | Elementwise computes the bitwise right-shift of `x` and `y`. | 
| Rint<T extends TNumber> | Returns element-wise integer closest to x. | 
| RngReadAndSkip | Advance the counter of a counter-based RNG. | 
| Roll<T extends TType> | Rolls the elements of a tensor along an axis. | 
| Round<T extends TType> | Rounds the values of a tensor to the nearest integer, element-wise. | 
| Rpc | Perform batches of RPC requests. | 
| Rsqrt<T extends TType> | Computes reciprocal of square root of x element-wise. | 
| RsqrtGrad<T extends TType> | Computes the gradient for the rsqrt of `x` wrt its input. | 
| SamplingDataset | Creates a dataset that takes a Bernoulli sample of the contents of another dataset. | 
| ScalarSummary | Outputs a `Summary` protocol buffer with scalar values. | 
| ScaleAndTranslate |  | 
| ScaleAndTranslateGrad<T extends TNumber> |  | 
| ScatterAdd<T extends TType> | Adds sparse updates to a variable reference. | 
| ScatterDiv<T extends TType> | Divides a variable reference by sparse updates. | 
| ScatterMax<T extends TNumber> | Reduces sparse updates into a variable reference using the `max` operation. | 
| ScatterMin<T extends TNumber> | Reduces sparse updates into a variable reference using the `min` operation. | 
| ScatterMul<T extends TType> | Multiplies sparse updates into a variable reference. | 
| ScatterNd<U extends TType> | Scatter `updates` into a new tensor according to `indices`. | 
| ScatterNdAdd<T extends TType> | Applies sparse addition to individual values or slices in a Variable. | 
| ScatterNdMax<T extends TType> | Computes element-wise maximum. | 
| ScatterNdMin<T extends TType> | Computes element-wise minimum. | 
| ScatterNdNonAliasingAdd<T extends TType> | Applies sparse addition to `input` using individual values or slices 
 from `updates` according to indices `indices`.  | 
| ScatterNdSub<T extends TType> | Applies sparse subtraction to individual values or slices in a Variable. | 
| ScatterNdUpdate<T extends TType> | Applies sparse `updates` to individual values or slices within a given 
 variable according to `indices`.  | 
| ScatterSub<T extends TType> | Subtracts sparse updates to a variable reference. | 
| ScatterUpdate<T extends TType> | Applies sparse updates to a variable reference. | 
| SdcaFprint | Computes fingerprints of the input strings. | 
| SegmentMax<T extends TNumber> | Computes the maximum along segments of a tensor. | 
| SegmentMean<T extends TType> | Computes the mean along segments of a tensor. | 
| SegmentMin<T extends TNumber> | Computes the minimum along segments of a tensor. | 
| SegmentProd<T extends TType> | Computes the product along segments of a tensor. | 
| SegmentSum<T extends TType> | Computes the sum along segments of a tensor. | 
| Select<T extends TType> |  | 
| Selu<T extends TNumber> | Computes scaled exponential linear: `scale * alpha * (exp(features) - 1)` 
 if < 0, `scale * features` otherwise.  | 
| SeluGrad<T extends TNumber> | Computes gradients for the scaled exponential linear (Selu) operation. | 
| SerializeIterator | Converts the given `resource_handle` representing an iterator to a variant tensor. | 
| SerializeManySparse<U extends TType> | Serialize an `N`-minibatch `SparseTensor` into an `[N, 3]` `Tensor` object. | 
| SerializeSparse<U extends TType> | Serialize a `SparseTensor` into a `[3]` `Tensor` object. | 
| SerializeTensor | Transforms a Tensor into a serialized TensorProto proto. | 
| SetSize | Number of unique elements along last dimension of input `set`. | 
| SetStatsAggregatorDataset |  | 
| Shape<U extends TNumber> | Returns the shape of a tensor. | 
| ShardDataset | Creates a `Dataset` that includes only 1/`num_shards` of this dataset. | 
| ShardedFilename | Generate a sharded filename. | 
| ShardedFilespec | Generate a glob pattern matching all sharded file names. | 
| Sharding<T extends TType> | An op which shards the input based on the given sharding attribute. | 
| ShuffleAndRepeatDataset |  | 
| ShuffleDataset |  | 
| Sigmoid<T extends TType> | Computes sigmoid of `x` element-wise. | 
| SigmoidGrad<T extends TType> | Computes the gradient of the sigmoid of `x` wrt its input. | 
| Sign<T extends TType> | Returns an element-wise indication of the sign of a number. | 
| Sin<T extends TType> | Computes sine of x element-wise. | 
| Sinh<T extends TType> | Computes hyperbolic sine of x element-wise. | 
| Size<U extends TNumber> | Returns the size of a tensor. | 
| SkipDataset | Creates a dataset that skips `count` elements from the `input_dataset`. | 
| SleepDataset |  | 
| Slice<T extends TType> | Return a slice from 'input'. | 
| SlidingWindowDataset | Creates a dataset that passes a sliding window over `input_dataset`. | 
| Snapshot<T extends TType> | Returns a copy of the input tensor. | 
| SobolSample<T extends TNumber> | Generates points from the Sobol sequence. | 
| Softmax<T extends TNumber> | Computes softmax activations. | 
| Softplus<T extends TNumber> | Computes softplus: `log(exp(features) + 1)`. | 
| SoftplusGrad<T extends TNumber> | Computes softplus gradients for a softplus operation. | 
| Softsign<T extends TNumber> | Computes softsign: `features / (abs(features) + 1)`. | 
| SoftsignGrad<T extends TNumber> | Computes softsign gradients for a softsign operation. | 
| Solve<T extends TType> | Solves systems of linear equations. | 
| Sort<T extends TType> | Wraps the XLA Sort operator, documented at 
  https://www.tensorflow.org/performance/xla/operation_semantics#sort
 .  | 
| SpaceToBatch<T extends TType> | SpaceToBatch for 4-D tensors of type T. | 
| SpaceToBatchNd<T extends TType> | SpaceToBatch for N-D tensors of type T. | 
| SpaceToDepth<T extends TType> | SpaceToDepth for tensors of type T. | 
| SparseApplyAdadelta<T extends TType> | var: Should be from a Variable(). | 
| SparseApplyAdagrad<T extends TType> | Update relevant entries in '*var' and '*accum' according to the adagrad scheme. | 
| SparseApplyAdagradDa<T extends TType> | Update entries in '*var' and '*accum' according to the proximal adagrad scheme. | 
| SparseApplyCenteredRmsProp<T extends TType> | Update '*var' according to the centered RMSProp algorithm. | 
| SparseApplyFtrl<T extends TType> | Update relevant entries in '*var' according to the Ftrl-proximal scheme. | 
| SparseApplyMomentum<T extends TType> | Update relevant entries in '*var' and '*accum' according to the momentum scheme. | 
| SparseApplyProximalAdagrad<T extends TType> | Sparse update entries in '*var' and '*accum' according to FOBOS algorithm. | 
| SparseApplyProximalGradientDescent<T extends TType> | Sparse update '*var' as FOBOS algorithm with fixed learning rate. | 
| SparseApplyRmsProp<T extends TType> | Update '*var' according to the RMSProp algorithm. | 
| SparseBincount<U extends TNumber> | Counts the number of occurrences of each value in an integer array. | 
| SparseConditionalAccumulator | A conditional accumulator for aggregating sparse gradients. | 
| SparseDenseCwiseAdd<T extends TType> | Adds up a SparseTensor and a dense Tensor, using these special rules: 
 (1) Broadcasts the dense side to have the same shape as the sparse side, if
     eligible;
 (2) Then, only the dense values pointed to by the indices of the SparseTensor
     participate in the cwise addition.  | 
| SparseDenseCwiseDiv<T extends TType> | Component-wise divides a SparseTensor by a dense Tensor. | 
| SparseDenseCwiseMul<T extends TType> | Component-wise multiplies a SparseTensor by a dense Tensor. | 
| SparseMatMul | Multiply matrix "a" by matrix "b". | 
| SparseMatrixAdd | Sparse addition of two CSR matrices, C = alpha * A + beta * B. | 
| SparseMatrixMatMul<T extends TType> | Matrix-multiplies a sparse matrix with a dense matrix. | 
| SparseMatrixMul | Element-wise multiplication of a sparse matrix with a dense tensor. | 
| SparseMatrixNNZ | Returns the number of nonzeroes of `sparse_matrix`. | 
| SparseMatrixOrderingAMD | Computes the Approximate Minimum Degree (AMD) ordering of `input`. | 
| SparseMatrixSoftmax | Calculates the softmax of a CSRSparseMatrix. | 
| SparseMatrixSoftmaxGrad | Calculates the gradient of the SparseMatrixSoftmax op. | 
| SparseMatrixSparseCholesky | Computes the sparse Cholesky decomposition of `input`. | 
| SparseMatrixSparseMatMul | Sparse-matrix-multiplies two CSR matrices `a` and `b`. | 
| SparseMatrixTranspose | Transposes the inner (matrix) dimensions of a CSRSparseMatrix. | 
| SparseMatrixZeros | Creates an all-zeros CSRSparseMatrix with shape `dense_shape`. | 
| SparseReduceMax<T extends TNumber> | Computes the max of elements across dimensions of a SparseTensor. | 
| SparseReduceSum<T extends TType> | Computes the sum of elements across dimensions of a SparseTensor. | 
| SparseSegmentMean<T extends TNumber> | Computes the mean along sparse segments of a tensor. | 
| SparseSegmentMeanGrad<T extends TNumber> | Computes gradients for SparseSegmentMean. | 
| SparseSegmentMeanWithNumSegments<T extends TNumber> | Computes the mean along sparse segments of a tensor. | 
| SparseSegmentSqrtN<T extends TNumber> | Computes the sum along sparse segments of a tensor divided by the sqrt of N. | 
| SparseSegmentSqrtNGrad<T extends TNumber> | Computes gradients for SparseSegmentSqrtN. | 
| SparseSegmentSqrtNWithNumSegments<T extends TNumber> | Computes the sum along sparse segments of a tensor divided by the sqrt of N. | 
| SparseSegmentSum<T extends TNumber> | Computes the sum along sparse segments of a tensor. | 
| SparseSegmentSumWithNumSegments<T extends TNumber> | Computes the sum along sparse segments of a tensor. | 
| SparseSliceGrad<T extends TType> | The gradient operator for the SparseSlice op. | 
| SparseSoftmax<T extends TNumber> | Applies softmax to a batched N-D `SparseTensor`. | 
| SparseTensorDenseAdd<U extends TType> | Adds up a `SparseTensor` and a dense `Tensor`, producing a dense `Tensor`. | 
| SparseTensorDenseMatMul<U extends TType> | Multiply SparseTensor (of rank 2) "A" by dense matrix "B". | 
| SparseTensorSliceDataset | Creates a dataset that splits a SparseTensor into elements row-wise. | 
| SparseTensorToCSRSparseMatrix | Converts a SparseTensor to a (possibly batched) CSRSparseMatrix. | 
| SparseToDense<U extends TType> | Converts a sparse representation into a dense tensor. | 
| Spence<T extends TNumber> |  | 
| SqlDataset | Creates a dataset that executes a SQL query and emits rows of the result set. | 
| Sqrt<T extends TType> | Computes square root of x element-wise. | 
| SqrtGrad<T extends TType> | Computes the gradient for the sqrt of `x` wrt its input. | 
| Sqrtm<T extends TType> | Computes the matrix square root of one or more square matrices: 
 matmul(sqrtm(A), sqrtm(A)) = A
  
 The input matrix should be invertible.  | 
| Square<T extends TType> | Computes square of x element-wise. | 
| SquaredDifference<T extends TType> | Returns conj(x - y)(x - y) element-wise. | 
| Squeeze<T extends TType> | Removes dimensions of size 1 from the shape of a tensor. | 
| Stack<T extends TType> | Packs a list of `N` rank-`R` tensors into one rank-`(R+1)` tensor. | 
| StageSize | Op returns the number of elements in the underlying container. | 
| StatefulRandomBinomial<V extends TNumber> |  | 
| StatefulStandardNormal<U extends TType> | Outputs random values from a normal distribution. | 
| StatefulTruncatedNormal<U extends TType> | Outputs random values from a truncated normal distribution. | 
| StatefulUniform<U extends TType> | Outputs random values from a uniform distribution. | 
| StatefulUniformFullInt<U extends TType> | Outputs random integers from a uniform distribution. | 
| StatefulUniformInt<U extends TType> | Outputs random integers from a uniform distribution. | 
| StatelessMultinomial<V extends TNumber> | Draws samples from a multinomial distribution. | 
| StatelessParameterizedTruncatedNormal<V extends TNumber> |  | 
| StatelessRandomBinomial<W extends TNumber> | Outputs deterministic pseudorandom random numbers from a binomial distribution. | 
| StatelessRandomGamma<V extends TNumber> | Outputs deterministic pseudorandom random numbers from a gamma distribution. | 
| StatelessRandomNormal<V extends TNumber> | Outputs deterministic pseudorandom values from a normal distribution. | 
| StatelessRandomNormalV2<U extends TNumber> | Outputs deterministic pseudorandom values from a normal distribution. | 
| StatelessRandomPoisson<W extends TNumber> | Outputs deterministic pseudorandom random numbers from a Poisson distribution. | 
| StatelessRandomUniform<V extends TNumber> | Outputs deterministic pseudorandom random values from a uniform distribution. | 
| StatelessRandomUniformFullInt<V extends TNumber> | Outputs deterministic pseudorandom random integers from a uniform distribution. | 
| StatelessRandomUniformFullIntV2<U extends TNumber> | Outputs deterministic pseudorandom random integers from a uniform distribution. | 
| StatelessRandomUniformInt<V extends TNumber> | Outputs deterministic pseudorandom random integers from a uniform distribution. | 
| StatelessRandomUniformIntV2<U extends TNumber> | Outputs deterministic pseudorandom random integers from a uniform distribution. | 
| StatelessRandomUniformV2<U extends TNumber> | Outputs deterministic pseudorandom random values from a uniform distribution. | 
| StatelessTruncatedNormal<V extends TNumber> | Outputs deterministic pseudorandom values from a truncated normal distribution. | 
| StatelessTruncatedNormalV2<U extends TNumber> | Outputs deterministic pseudorandom values from a truncated normal distribution. | 
| StaticRegexFullMatch | Check if the input matches the regex pattern. | 
| StaticRegexReplace | Replaces the match of pattern in input with rewrite. | 
| StatsAggregatorHandle |  | 
| StatsAggregatorSummary | Produces a summary of any statistics recorded by the given statistics manager. | 
| StopGradient<T extends TType> | Stops gradient computation. | 
| StridedSlice<T extends TType> | Return a strided slice from `input`. | 
| StridedSliceAssign<T extends TType> | Assign `value` to the sliced l-value reference of `ref`. | 
| StridedSliceGrad<U extends TType> | Returns the gradient of `StridedSlice`. | 
| StringFormat | Formats a string template using a list of tensors. | 
| StringLength | String lengths of `input`. | 
| Strip | Strip leading and trailing whitespaces from the Tensor. | 
| Sub<T extends TType> | Returns x - y element-wise. | 
| Substr | Return substrings from `Tensor` of strings. | 
| Sum<T extends TType> | Computes the sum of elements across dimensions of a tensor. | 
| SummaryWriter |  | 
| TPUCompilationResult | Returns the result of a TPU compilation. | 
| TPUEmbeddingActivations | An op enabling differentiation of TPU Embeddings. | 
| TPUReplicatedInput<T extends TType> | Connects N inputs to an N-way replicated TPU computation. | 
| TakeDataset | Creates a dataset that contains `count` elements from the `input_dataset`. | 
| Tan<T extends TType> | Computes tan of x element-wise. | 
| Tanh<T extends TType> | Computes hyperbolic tangent of `x` element-wise. | 
| TanhGrad<T extends TType> | Computes the gradient for the tanh of `x` wrt its input. | 
| TemporaryVariable<T extends TType> | Returns a tensor that may be mutated, but only persists within a single step. | 
| TensorArrayGather<T extends TType> | Gather specific elements from the TensorArray into output `value`. | 
| TensorArrayPack<T extends TType> |  | 
| TensorArrayRead<T extends TType> | Read an element from the TensorArray into output `value`. | 
| TensorArrayScatter | Scatter the data from the input value into specific TensorArray elements. | 
| TensorArraySize | Get the current size of the TensorArray. | 
| TensorArraySplit | Split the data from the input value into TensorArray elements. | 
| TensorArrayUnpack |  | 
| TensorArrayWrite | Push an element onto the tensor_array. | 
| TensorDataset | Creates a dataset that emits `components` as a tuple of tensors once. | 
| TensorDiag<T extends TType> | Returns a diagonal tensor with a given diagonal values. | 
| TensorDiagPart<T extends TType> | Returns the diagonal part of the tensor. | 
| TensorForestTreeIsInitializedOp | Checks whether a tree has been initialized. | 
| TensorForestTreePredict | Output the logits for the given input data | 
| TensorForestTreeResourceHandleOp | Creates a handle to a TensorForestTreeResource | 
| TensorForestTreeSerialize | Serializes the tree handle to a proto | 
| TensorForestTreeSize | Get the number of nodes in a tree | 
| TensorListConcatLists |  | 
| TensorListElementShape<T extends TNumber> | The shape of the elements of the given list, as a tensor. | 
| TensorListFromTensor | Creates a TensorList which, when stacked, has the value of `tensor`. | 
| TensorListGather<T extends TType> | Creates a Tensor by indexing into the TensorList. | 
| TensorListGetItem<T extends TType> |  | 
| TensorListLength | Returns the number of tensors in the input tensor list. | 
| TensorListPushBack | Returns a list which has the passed-in `Tensor` as last element and the other elements of the given list in `input_handle`. | 
| TensorListPushBackBatch |  | 
| TensorListReserve | List of the given size with empty elements. | 
| TensorListResize | Resizes the list. | 
| TensorListScatter | Creates a TensorList by indexing into a Tensor. | 
| TensorListScatterIntoExistingList | Scatters tensor at indices in an input list. | 
| TensorListSetItem |  | 
| TensorListSplit | Splits a tensor into a list. | 
| TensorListStack<T extends TType> | Stacks all tensors in the list. | 
| TensorMapErase | Returns a tensor map with item from given key erased. | 
| TensorMapHasKey | Returns whether the given key exists in the map. | 
| TensorMapInsert | Returns a map that is the 'input_handle' with the given key-value pair inserted. | 
| TensorMapLookup<U extends TType> | Returns the value from a given key in a tensor map. | 
| TensorMapSize | Returns the number of tensors in the input tensor map. | 
| TensorMapStackKeys<T extends TType> | Returns a Tensor stack of all keys in a tensor map. | 
| TensorScatterNdAdd<T extends TType> | Adds sparse `updates` to an existing tensor according to `indices`. | 
| TensorScatterNdMax<T extends TType> |  | 
| TensorScatterNdMin<T extends TType> |  | 
| TensorScatterNdSub<T extends TType> | Subtracts sparse `updates` from an existing tensor according to `indices`. | 
| TensorScatterNdUpdate<T extends TType> | Scatter `updates` into an existing tensor according to `indices`. | 
| TensorSliceDataset | Creates a dataset that emits each dim-0 slice of `components` once. | 
| TensorStridedSliceUpdate<T extends TType> | Assign `value` to the sliced l-value reference of `input`. | 
| TensorSummary | Outputs a `Summary` protocol buffer with a tensor and per-plugin data. | 
| TextLineDataset | Creates a dataset that emits the lines of one or more text files. | 
| TextLineReader | A Reader that outputs the lines of a file delimited by '\n'. | 
| TfRecordDataset | Creates a dataset that emits the records from one or more TFRecord files. | 
| TfRecordReader | A Reader that outputs the records from a TensorFlow Records file. | 
| ThreadPoolDataset | Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
| ThreadPoolHandle | Creates a dataset that uses a custom thread pool to compute `input_dataset`. | 
| Tile<T extends TType> | Constructs a tensor by tiling a given tensor. | 
| TileGrad<T extends TType> | Returns the gradient of `Tile`. | 
| Timestamp | Provides the time since epoch in seconds. | 
| ToBool | Converts a tensor to a scalar predicate. | 
| ToHashBucket | Converts each string in the input Tensor to its hash mod by a number of buckets. | 
| ToHashBucketFast | Converts each string in the input Tensor to its hash mod by a number of buckets. | 
| ToHashBucketStrong | Converts each string in the input Tensor to its hash mod by a number of buckets. | 
| ToNumber<T extends TNumber> | Converts each string in the input Tensor to the specified numeric type. | 
| Transpose<T extends TType> | Shuffle dimensions of x according to a permutation. | 
| TriangularSolve<T extends TType> | Solves systems of linear equations with upper or lower triangular matrices by backsubstitution. | 
| TridiagonalMatMul<T extends TType> | Calculate product with tridiagonal matrix. | 
| TridiagonalSolve<T extends TType> | Solves tridiagonal systems of equations. | 
| TruncateDiv<T extends TType> | Returns x / y element-wise for integer types. | 
| TruncateMod<T extends TNumber> | Returns element-wise remainder of division. | 
| TruncatedNormal<U extends TNumber> | Outputs random values from a truncated normal distribution. | 
| Unbatch<T extends TType> | Reverses the operation of Batch for a single output Tensor. | 
| UnbatchDataset | A dataset that splits the elements of its input into multiple elements. | 
| UnbatchGrad<T extends TType> | Gradient of Unbatch. | 
| UnicodeEncode | Encode a tensor of ints into unicode strings. | 
| UnicodeScript | Determine the script codes of a given tensor of Unicode integer code points. | 
| UnicodeTranscode | Transcode the input text from a source encoding to a destination encoding. | 
| UniqueDataset | Creates a dataset that contains the unique elements of `input_dataset`. | 
| UnravelIndex<T extends TNumber> | Converts an array of flat indices into a tuple of coordinate arrays. | 
| UnsortedSegmentJoin | Joins the elements of `inputs` based on `segment_ids`. | 
| UnsortedSegmentMax<T extends TNumber> | Computes the maximum along segments of a tensor. | 
| UnsortedSegmentMin<T extends TNumber> | Computes the minimum along segments of a tensor. | 
| UnsortedSegmentProd<T extends TType> | Computes the product along segments of a tensor. | 
| UnsortedSegmentSum<T extends TType> | Computes the sum along segments of a tensor. | 
| UnwrapDatasetVariant |  | 
| Upper | Converts all lowercase characters into their respective uppercase replacements. | 
| UpperBound<U extends TNumber> | Applies upper_bound(sorted_search_values, values) along each row. | 
| VarHandleOp | Creates a handle to a Variable resource. | 
| VarIsInitializedOp | Checks whether a resource handle-based variable has been initialized. | 
| Variable<T extends TType> | Holds state in the form of a tensor that persists across steps. | 
| VariableShape<T extends TNumber> | Returns the shape of the variable pointed to by `resource`. | 
| Where | Returns locations of nonzero / true values in a tensor. | 
| WholeFileReader | A Reader that outputs the entire contents of a file as a value. | 
| WindowDataset | Combines (nests of) input elements into a dataset of (nests of) windows. | 
| WorkerHeartbeat | Worker heartbeat op. | 
| WrapDatasetVariant |  | 
| Xdivy<T extends TType> | Returns 0 if x == 0, and x / y otherwise, elementwise. | 
| XlaRecvFromHost<T extends TType> | An op to receive a tensor from the host. | 
| XlaSetBound | Set a bound for the given input value as a hint to Xla compiler, 
         returns the same value.  | 
| XlaSpmdFullToShardShape<T extends TType> | An op used by XLA SPMD partitioner to switch from automatic partitioning to 
 manual partitioning.  | 
| XlaSpmdShardToFullShape<T extends TType> | An op used by XLA SPMD partitioner to switch from manual partitioning to 
 automatic partitioning.  | 
| Xlog1py<T extends TType> | Returns 0 if x == 0, and x * log1p(y) otherwise, elementwise. | 
| Xlogy<T extends TType> | Returns 0 if x == 0, and x * log(y) otherwise, elementwise. | 
| Zeros<T extends TType> | An operator creating a constant initialized with zeros of the shape given by `dims`. | 
| ZerosLike<T extends TType> | Returns a tensor of zeros with the same shape and type as x. | 
| Zeta<T extends TNumber> | Compute the Hurwitz zeta function \\(\zeta(x, q)\\). | 
| ZipDataset | Creates a dataset that zips together `input_datasets`. | 
| erfinv<T extends TNumber> |  |