FakeQuantWithMinMaxVarsPerChannel

public final class FakeQuantWithMinMaxVarsPerChannel

Fake-quantize the 'inputs' tensor of type float via per-channel floats

Fake-quantize the `inputs` tensor of type float per-channel and one of the shapes: `[d]`, `[b, d]` `[b, h, w, d]` via per-channel floats `min` and `max` of shape `[d]` to `outputs` tensor of same shape as `inputs`.

Attributes

  • `[min; max]` define the clamping range for the `inputs` data.
  • `inputs` values are quantized into the quantization range ( `[0; 2^num_bits - 1]` when `narrow_range` is false and `[1; 2^num_bits - 1]` when it is true) and then de-quantized and output as floats in `[min; max]` interval.
  • `num_bits` is the bitwidth of the quantization; between 2 and 16, inclusive.
Before quantization, `min` and `max` values are adjusted with the following logic. It is suggested to have `min <= 0 <= max`. If `0` is not in the range of values, the behavior can be unexpected:
  • If `0 < min < max`: `min_adj = 0` and `max_adj = max - min`.
  • If `min < max < 0`: `min_adj = min - max` and `max_adj = 0`.
  • If `min <= 0 <= max`: `scale = (max - min) / (2^num_bits - 1) `, `min_adj = scale * round(min / scale)` and `max_adj = max + min_adj - min`.
This operation has a gradient and thus allows for training `min` and `max` values.

Nested Classes

Constants

String OP_NAME The name of this op, as known by TensorFlow core engine

Public Methods

Output<TFloat32>
asOutput()
Returns the symbolic handle of the tensor.
static FakeQuantWithMinMaxVarsPerChannel
create(Scope scope, Operand<TFloat32> inputs, Operand<TFloat32> min, Operand<TFloat32> max, Options... options)
Factory method to create a class wrapping a new FakeQuantWithMinMaxVarsPerChannel operation.
static FakeQuantWithMinMaxVarsPerChannel.Options
narrowRange(Boolean narrowRange)
static FakeQuantWithMinMaxVarsPerChannel.Options
numBits(Long numBits)
Output<TFloat32>

Inherited Methods

org.tensorflow.op.RawOp
final boolean
equals(Object obj)
final int
Operation
op()
Return this unit of computation as a single Operation.
final String
boolean
equals(Object arg0)
final Class<?>
getClass()
int
hashCode()
final void
notify()
final void
notifyAll()
String
toString()
final void
wait(long arg0, int arg1)
final void
wait(long arg0)
final void
wait()
org.tensorflow.op.Op
abstract ExecutionEnvironment
env()
Return the execution environment this op was created in.
abstract Operation
op()
Return this unit of computation as a single Operation.
org.tensorflow.Operand
abstract Output<TFloat32>
asOutput()
Returns the symbolic handle of the tensor.
abstract TFloat32
asTensor()
Returns the tensor at this operand.
abstract Shape
shape()
Returns the (possibly partially known) shape of the tensor referred to by the Output of this operand.
abstract Class<TFloat32>
type()
Returns the tensor type of this operand
org.tensorflow.ndarray.Shaped
abstract int
rank()
abstract Shape
shape()
abstract long
size()
Computes and returns the total size of this container, in number of values.

Constants

public static final String OP_NAME

The name of this op, as known by TensorFlow core engine

Constant Value: "FakeQuantWithMinMaxVarsPerChannel"

Public Methods

public Output<TFloat32> asOutput ()

Returns the symbolic handle of the tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public static FakeQuantWithMinMaxVarsPerChannel create (Scope scope, Operand<TFloat32> inputs, Operand<TFloat32> min, Operand<TFloat32> max, Options... options)

Factory method to create a class wrapping a new FakeQuantWithMinMaxVarsPerChannel operation.

Parameters
scope current scope
options carries optional attributes values
Returns
  • a new instance of FakeQuantWithMinMaxVarsPerChannel

public static FakeQuantWithMinMaxVarsPerChannel.Options narrowRange (Boolean narrowRange)

public static FakeQuantWithMinMaxVarsPerChannel.Options numBits (Long numBits)

public Output<TFloat32> outputs ()