SpaceToBatchNd

public final class SpaceToBatchNd

SpaceToBatch for N-D tensors of type T.

This operation divides "spatial" dimensions `[1, ..., M]` of the input into a grid of blocks of shape `block_shape`, and interleaves these blocks with the "batch" dimension (0) such that in the output, the spatial dimensions `[1, ..., M]` correspond to the position within the grid, and the batch dimension combines both the position within a spatial block and the original batch position. Prior to division into blocks, the spatial dimensions of the input are optionally zero padded according to `paddings`. See below for a precise description.

Constants

String OP_NAME The name of this op, as known by TensorFlow core engine

Public Methods

Output<T>
asOutput()
Returns the symbolic handle of the tensor.
static <T extends TType> SpaceToBatchNd<T>
create(Scope scope, Operand<T> input, Operand<? extends TNumber> blockShape, Operand<? extends TNumber> paddings)
Factory method to create a class wrapping a new SpaceToBatchNd operation.
Output<T>
output()

Inherited Methods

org.tensorflow.op.RawOp
final boolean
equals(Object obj)
final int
Operation
op()
Return this unit of computation as a single Operation.
final String
boolean
equals(Object arg0)
final Class<?>
getClass()
int
hashCode()
final void
notify()
final void
notifyAll()
String
toString()
final void
wait(long arg0, int arg1)
final void
wait(long arg0)
final void
wait()
org.tensorflow.op.Op
abstract ExecutionEnvironment
env()
Return the execution environment this op was created in.
abstract Operation
op()
Return this unit of computation as a single Operation.
org.tensorflow.Operand
abstract Output<T>
asOutput()
Returns the symbolic handle of the tensor.
abstract T
asTensor()
Returns the tensor at this operand.
abstract Shape
shape()
Returns the (possibly partially known) shape of the tensor referred to by the Output of this operand.
abstract Class<T>
type()
Returns the tensor type of this operand
org.tensorflow.ndarray.Shaped
abstract int
rank()
abstract Shape
shape()
abstract long
size()
Computes and returns the total size of this container, in number of values.

Constants

public static final String OP_NAME

The name of this op, as known by TensorFlow core engine

Constant Value: "SpaceToBatchND"

Public Methods

public Output<T> asOutput ()

Returns the symbolic handle of the tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public static SpaceToBatchNd<T> create (Scope scope, Operand<T> input, Operand<? extends TNumber> blockShape, Operand<? extends TNumber> paddings)

Factory method to create a class wrapping a new SpaceToBatchNd operation.

Parameters
scope current scope
input N-D with shape `input_shape = [batch] + spatial_shape + remaining_shape`, where spatial_shape has `M` dimensions.
blockShape 1-D with shape `[M]`, all values must be >= 1.
paddings 2-D with shape `[M, 2]`, all values must be >= 0. `paddings[i] = [pad_start, pad_end]` specifies the padding for input dimension `i + 1`, which corresponds to spatial dimension `i`. It is required that `block_shape[i]` divides `input_shape[i + 1] + pad_start + pad_end`.

This operation is equivalent to the following steps:

1. Zero-pad the start and end of dimensions `[1, ..., M]` of the input according to `paddings` to produce `padded` of shape `padded_shape`.

2. Reshape `padded` to `reshaped_padded` of shape:

[batch] + [padded_shape[1] / block_shape[0], block_shape[0], ..., padded_shape[M] / block_shape[M-1], block_shape[M-1]] + remaining_shape

3. Permute dimensions of `reshaped_padded` to produce `permuted_reshaped_padded` of shape:

block_shape + [batch] + [padded_shape[1] / block_shape[0], ..., padded_shape[M] / block_shape[M-1]] + remaining_shape

4. Reshape `permuted_reshaped_padded` to flatten `block_shape` into the batch dimension, producing an output tensor of shape:

[batch * prod(block_shape)] + [padded_shape[1] / block_shape[0], ..., padded_shape[M] / block_shape[M-1]] + remaining_shape

Some examples:

(1) For the following input of shape `[1, 2, 2, 1]`, `block_shape = [2, 2]`, and `paddings = [[0, 0], [0, 0]]`:

x = [[[[1], [2]], [[3], [4]]]]
 
The output tensor has shape `[4, 1, 1, 1]` and value:
[[[[1]]], [[[2]]], [[[3]]], [[[4]]]]
 
(2) For the following input of shape `[1, 2, 2, 3]`, `block_shape = [2, 2]`, and `paddings = [[0, 0], [0, 0]]`:
x = [[[[1, 2, 3], [4, 5, 6]],
       [[7, 8, 9], [10, 11, 12]]]]
 
The output tensor has shape `[4, 1, 1, 3]` and value:
[[[[1, 2, 3]]], [[[4, 5, 6]]], [[[7, 8, 9]]], [[[10, 11, 12]]]]
 
(3) For the following input of shape `[1, 4, 4, 1]`, `block_shape = [2, 2]`, and `paddings = [[0, 0], [0, 0]]`:
x = [[[[1],   [2],  [3],  [4]],
       [[5],   [6],  [7],  [8]],
       [[9],  [10], [11],  [12]],
       [[13], [14], [15],  [16]]]]
 
The output tensor has shape `[4, 2, 2, 1]` and value:
x = [[[[1], [3]], [[9], [11]]],
      [[[2], [4]], [[10], [12]]],
      [[[5], [7]], [[13], [15]]],
      [[[6], [8]], [[14], [16]]]]
 
(4) For the following input of shape `[2, 2, 4, 1]`, block_shape = `[2, 2]`, and paddings = `[[0, 0], [2, 0]]`:
x = [[[[1],   [2],  [3],  [4]],
       [[5],   [6],  [7],  [8]]],
      [[[9],  [10], [11],  [12]],
       [[13], [14], [15],  [16]]]]
 
The output tensor has shape `[8, 1, 3, 1]` and value:
x = [[[[0], [1], [3]]], [[[0], [9], [11]]],
      [[[0], [2], [4]]], [[[0], [10], [12]]],
      [[[0], [5], [7]]], [[[0], [13], [15]]],
      [[[0], [6], [8]]], [[[0], [14], [16]]]]
 
Among others, this operation is useful for reducing atrous convolution into regular convolution.

Returns
  • a new instance of SpaceToBatchNd

public Output<T> output ()