MatrixDiagPart

public final class MatrixDiagPart

Returns the batched diagonal part of a batched tensor.

Returns a tensor with the `k[0]`-th to `k[1]`-th diagonals of the batched `input`.

Assume `input` has `r` dimensions `[I, J, ..., L, M, N]`. Let `max_diag_len` be the maximum length among all diagonals to be extracted, `max_diag_len = min(M + min(k[1], 0), N + min(-k[0], 0))` Let `num_diags` be the number of diagonals to extract, `num_diags = k[1] - k[0] + 1`.

If `num_diags == 1`, the output tensor is of rank `r - 1` with shape `[I, J, ..., L, max_diag_len]` and values:

diagonal[i, j, ..., l, n]
   = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
     padding_value                 ; otherwise.
 
where `y = max(-k[1], 0)`, `x = max(k[1], 0)`.

Otherwise, the output tensor has rank `r` with dimensions `[I, J, ..., L, num_diags, max_diag_len]` with values:

diagonal[i, j, ..., l, m, n]
   = input[i, j, ..., l, n+y, n+x] ; if 0 <= n+y < M and 0 <= n+x < N,
     padding_value                 ; otherwise.
 
where `d = k[1] - m`, `y = max(-d, 0)`, and `x = max(d, 0)`.

The input must be at least a matrix.

For example:

input = np.array([[[1, 2, 3, 4],  # Input shape: (2, 3, 4)
                    [5, 6, 7, 8],
                    [9, 8, 7, 6]],
                   [[5, 4, 3, 2],
                    [1, 2, 3, 4],
                    [5, 6, 7, 8]]])
 
 # A main diagonal from each batch.
 tf.matrix_diag_part(input) ==> [[1, 6, 7],  # Output shape: (2, 3)
                                 [5, 2, 7]]
 
 # A superdiagonal from each batch.
 tf.matrix_diag_part(input, k = 1)
   ==> [[2, 7, 6],  # Output shape: (2, 3)
        [4, 3, 8]]
 
 # A tridiagonal band from each batch.
 tf.matrix_diag_part(input, k = (-1, 1))
   ==> [[[2, 7, 6],  # Output shape: (2, 3, 3)
         [1, 6, 7],
         [5, 8, 0]],
        [[4, 3, 8],
         [5, 2, 7],
         [1, 6, 0]]]
 
 # Padding value = 9
 tf.matrix_diag_part(input, k = (1, 3), padding_value = 9)
   ==> [[[4, 9, 9],  # Output shape: (2, 3, 3)
         [3, 8, 9],
         [2, 7, 6]],
        [[2, 9, 9],
         [3, 4, 9],
         [4, 3, 8]]]
 

Constants

String OP_NAME The name of this op, as known by TensorFlow core engine

Public Methods

Output<T>
asOutput()
Returns the symbolic handle of the tensor.
static <T extends TType> MatrixDiagPart<T>
create(Scope scope, Operand<T> input, Operand<TInt32> k, Operand<T> paddingValue)
Factory method to create a class wrapping a new MatrixDiagPart operation.
Output<T>
diagonal()
The extracted diagonal(s).

Inherited Methods

org.tensorflow.op.RawOp
final boolean
equals(Object obj)
final int
Operation
op()
Return this unit of computation as a single Operation.
final String
boolean
equals(Object arg0)
final Class<?>
getClass()
int
hashCode()
final void
notify()
final void
notifyAll()
String
toString()
final void
wait(long arg0, int arg1)
final void
wait(long arg0)
final void
wait()
org.tensorflow.op.Op
abstract ExecutionEnvironment
env()
Return the execution environment this op was created in.
abstract Operation
op()
Return this unit of computation as a single Operation.
org.tensorflow.Operand
abstract Output<T>
asOutput()
Returns the symbolic handle of the tensor.
abstract T
asTensor()
Returns the tensor at this operand.
abstract Shape
shape()
Returns the (possibly partially known) shape of the tensor referred to by the Output of this operand.
abstract Class<T>
type()
Returns the tensor type of this operand
org.tensorflow.ndarray.Shaped
abstract int
rank()
abstract Shape
shape()
abstract long
size()
Computes and returns the total size of this container, in number of values.

Constants

public static final String OP_NAME

The name of this op, as known by TensorFlow core engine

Constant Value: "MatrixDiagPartV2"

Public Methods

public Output<T> asOutput ()

Returns the symbolic handle of the tensor.

Inputs to TensorFlow operations are outputs of another TensorFlow operation. This method is used to obtain a symbolic handle that represents the computation of the input.

public static MatrixDiagPart<T> create (Scope scope, Operand<T> input, Operand<TInt32> k, Operand<T> paddingValue)

Factory method to create a class wrapping a new MatrixDiagPart operation.

Parameters
scope current scope
input Rank `r` tensor where `r >= 2`.
k Diagonal offset(s). Positive value means superdiagonal, 0 refers to the main diagonal, and negative value means subdiagonals. `k` can be a single integer (for a single diagonal) or a pair of integers specifying the low and high ends of a matrix band. `k[0]` must not be larger than `k[1]`.
paddingValue The value to fill the area outside the specified diagonal band with. Default is 0.
Returns
  • a new instance of MatrixDiagPart

public Output<T> diagonal ()

The extracted diagonal(s).