คำนวณค่าเฉลี่ยความแตกต่างสัมบูรณ์ระหว่างป้ายกำกับและการคาดคะเน
loss = abs(labels - predictions)
การใช้งานแบบสแตนด์อโลน:
Operand<TFloat32> labels = tf.constant(new float[][] { {0.f, 1.f}, {0.f, 0.f} }); Operand<TFloat32> predictions = tf.constant(new float[][] { {1.f, 1.f}, {1.f, 0.f} }); MeanAbsoluteError mae = new MeanAbsoluteError(tf); Operand<TFloat32> result = mae.call(labels, predictions); // produces 0.5f
การโทรด้วยน้ำหนักตัวอย่าง:
Operand<TFloat32> sampleWeight = tf.constant(new float[] {0.7f, 0.3f}); Operand<TFloat32> result = mae.call(labels, predictions, sampleWeight); // produces 0.25f
การใช้ประเภทการลด SUM
:
MeanAbsoluteError mae = new MeanAbsoluteError(tf, Reduction.SUM); Operand<TFloat32> result = mae.call(labels, predictions); // produces 1.0f
การใช้ประเภทการลด NONE
:
MeanAbsoluteError mae = new MeanAbsoluteError(tf, Reduction.NONE); Operand<TFloat32> result = mae.call(labels, predictions); // produces [0.5f, 0.5f]
ฟิลด์ที่สืบทอดมา
การลด ขั้นสุดท้ายแบบคงที่สาธารณะ | ลด_ค่าเริ่มต้น |
คอนสตรัคชั่นสาธารณะ
MeanAbsoluteError (Ops tf) สร้าง MeanAbsoluteError Loss โดยใช้ getSimpleName() เป็นชื่อการสูญเสียและการลดการสูญเสีย REDUCTION_DEFAULT | |
MeanAbsoluteError (Ops tf, การลด การ ลด) สร้าง MeanAbsoluteError Loss โดยใช้ getSimpleName() เป็นชื่อการสูญเสีย | |
วิธีการสาธารณะ
<T ขยาย TNumber > ตัวถูกดำเนินการ <T> | โทร ( ตัวดำเนินการ <? ขยาย TNumber > ป้ายกำกับ, ตัวดำเนินการ <T> การคาดคะเน, ตัวดำเนินการ <T> ตัวอย่างน้ำหนัก) สร้างตัวถูกดำเนินการที่คำนวณการสูญเสีย |
วิธีการสืบทอด
บทคัดย่อ <T ขยาย TNumber > ตัวถูกดำเนินการ <T> | โทร ( ตัวดำเนินการ <? ขยาย TNumber > ป้ายกำกับ, ตัวดำเนินการ <T> การคาดคะเน, ตัวดำเนินการ <T> ตัวอย่างน้ำหนัก) สร้างตัวถูกดำเนินการที่คำนวณการสูญเสีย |
<T ขยาย TNumber > ตัวถูกดำเนินการ <T> | |
การลดน้อยลง | ได้รับการลด () ได้รับการลดการสูญเสีย |
ปฏิบัติการ | getTF () รับ Ops TensorFlow |
บูลีน | เท่ากับ (วัตถุ arg0) |
คลาสสุดท้าย<?> | รับคลาส () |
ภายใน | แฮชโค้ด () |
โมฆะสุดท้าย | แจ้ง () |
โมฆะสุดท้าย | แจ้งทั้งหมด () |
สตริง | toString () |
โมฆะสุดท้าย | รอสักครู่ (ยาว arg0, int arg1) |
โมฆะสุดท้าย | รอ (ยาว arg0) |
โมฆะสุดท้าย | รอ () |
คอนสตรัคชั่นสาธารณะ
MeanAbsoluteError สาธารณะ (Ops tf)
สร้าง MeanAbsoluteError Loss โดยใช้ getSimpleName()
เป็นชื่อการสูญเสียและการลดการสูญเสีย REDUCTION_DEFAULT
พารามิเตอร์
ไม่ | Ops ของ TensorFlow |
---|
MeanAbsoluteError สาธารณะ (Ops tf, การลด การ ลด)
สร้าง MeanAbsoluteError Loss โดยใช้ getSimpleName()
เป็นชื่อการสูญเสีย
พารามิเตอร์
ไม่ | Ops ของ TensorFlow |
---|---|
การลดน้อยลง | ประเภทของส่วนลดที่จะใช้กับการสูญเสีย |
MeanAbsoluteError สาธารณะ (Ops tf ชื่อสตริง ลดการลด )
สร้าง MeanAbsoluteError
พารามิเตอร์
ไม่ | Ops ของ TensorFlow |
---|---|
ชื่อ | ชื่อของการสูญเสีย |
การลดน้อยลง | ประเภทของส่วนลดที่จะใช้กับการสูญเสีย |
วิธีการสาธารณะ
ตัวดำเนินการ สาธารณะ <T> โทร ( ตัวดำเนินการ <? ขยาย TNumber > ป้ายกำกับ, ตัวดำเนินการ <T> การคาดการณ์, ตัวดำเนินการ <T> ตัวอย่างน้ำหนัก)
สร้างตัวถูกดำเนินการที่คำนวณการสูญเสีย
พารามิเตอร์
ฉลาก | ค่าความจริงหรือป้ายกำกับ |
---|---|
การคาดการณ์ | การคาดการณ์ |
ตัวอย่างน้ำหนัก | SampleWeights ที่เป็นตัวเลือกจะทำหน้าที่เป็นสัมประสิทธิ์การสูญเสีย หากมีการระบุสเกลาร์ การสูญเสียก็จะถูกปรับขนาดตามค่าที่กำหนด หาก SampleWeights เป็นเทนเซอร์ที่มีขนาด [batch_size] ค่าที่สูญเสียทั้งหมดสำหรับแต่ละตัวอย่างในแบตช์จะถูกปรับขนาดใหม่โดยองค์ประกอบที่เกี่ยวข้องในเวกเตอร์ SampleWeights หากรูปร่างของ SampleWeights คือ [batch_size, d0, .. dN-1] (หรือสามารถถ่ายทอดไปยังรูปร่างนี้ได้) ดังนั้น องค์ประกอบที่สูญเสียแต่ละรายการของการคาดการณ์จะถูกปรับขนาดตามค่าที่สอดคล้องกันของ SampleWeights (หมายเหตุสำหรับ dN-1: ฟังก์ชันการสูญเสียทั้งหมดลดลง 1 มิติ โดยปกติจะเป็นแกน=-1) |
การส่งคืน
- การสูญเสีย