MeanAbsoluteError

MeanAbsoluteError คลาสสาธารณะ

คำนวณค่าเฉลี่ยความแตกต่างสัมบูรณ์ระหว่างป้ายกำกับและการคาดคะเน

loss = abs(labels - predictions)

การใช้งานแบบสแตนด์อโลน:

    Operand<TFloat32> labels =
        tf.constant(new float[][] { {0.f, 1.f}, {0.f, 0.f} });
    Operand<TFloat32> predictions =
        tf.constant(new float[][] { {1.f, 1.f}, {1.f, 0.f} });
    MeanAbsoluteError mae = new MeanAbsoluteError(tf);
    Operand<TFloat32> result = mae.call(labels, predictions);
    // produces 0.5f
 

การโทรด้วยน้ำหนักตัวอย่าง:

    Operand<TFloat32> sampleWeight = tf.constant(new float[] {0.7f, 0.3f});
    Operand<TFloat32> result = mae.call(labels, predictions, sampleWeight);
    // produces 0.25f
 

การใช้ประเภทการลด SUM :

    MeanAbsoluteError mae = new MeanAbsoluteError(tf, Reduction.SUM);
    Operand<TFloat32> result = mae.call(labels, predictions);
    // produces 1.0f
 

การใช้ประเภทการลด NONE :

    MeanAbsoluteError mae = new MeanAbsoluteError(tf, Reduction.NONE);
    Operand<TFloat32> result = mae.call(labels, predictions);
    // produces [0.5f, 0.5f]
 

ฟิลด์ที่สืบทอดมา

org.tensorflow.framework.losses.Loss
การลด ขั้นสุดท้ายแบบคงที่สาธารณะ ลด_ค่าเริ่มต้น

คอนสตรัคชั่นสาธารณะ

MeanAbsoluteError (Ops tf)
สร้าง MeanAbsoluteError Loss โดยใช้ getSimpleName() เป็นชื่อการสูญเสียและการลดการสูญเสีย REDUCTION_DEFAULT
MeanAbsoluteError (Ops tf, การลด การ ลด)
สร้าง MeanAbsoluteError Loss โดยใช้ getSimpleName() เป็นชื่อการสูญเสีย
MeanAbsoluteError (Ops tf ชื่อสตริง การลดการลด )
สร้าง MeanAbsoluteError

วิธีการสาธารณะ

<T ขยาย TNumber > ตัวถูกดำเนินการ <T>
โทร ( ตัวดำเนินการ <? ขยาย TNumber > ป้ายกำกับ, ตัวดำเนินการ <T> การคาดคะเน, ตัวดำเนินการ <T> ตัวอย่างน้ำหนัก)
สร้างตัวถูกดำเนินการที่คำนวณการสูญเสีย

วิธีการสืบทอด

org.tensorflow.framework.losses.Loss
บทคัดย่อ <T ขยาย TNumber > ตัวถูกดำเนินการ <T>
โทร ( ตัวดำเนินการ <? ขยาย TNumber > ป้ายกำกับ, ตัวดำเนินการ <T> การคาดคะเน, ตัวดำเนินการ <T> ตัวอย่างน้ำหนัก)
สร้างตัวถูกดำเนินการที่คำนวณการสูญเสีย
<T ขยาย TNumber > ตัวถูกดำเนินการ <T>
โทร ( ตัวดำเนินการ <? ขยาย TNumber > ป้ายกำกับ, ตัวดำเนินการ <T> การคาดการณ์)
คำนวณการสูญเสีย
การลดน้อยลง
ได้รับการลด ()
ได้รับการลดการสูญเสีย
ปฏิบัติการ
getTF ()
รับ Ops TensorFlow
บูลีน
เท่ากับ (วัตถุ arg0)
คลาสสุดท้าย<?>
รับคลาส ()
ภายใน
แฮชโค้ด ()
โมฆะสุดท้าย
แจ้ง ()
โมฆะสุดท้าย
แจ้งทั้งหมด ()
สตริง
toString ()
โมฆะสุดท้าย
รอสักครู่ (ยาว arg0, int arg1)
โมฆะสุดท้าย
รอ (ยาว arg0)
โมฆะสุดท้าย
รอ ()

คอนสตรัคชั่นสาธารณะ

MeanAbsoluteError สาธารณะ (Ops tf)

สร้าง MeanAbsoluteError Loss โดยใช้ getSimpleName() เป็นชื่อการสูญเสียและการลดการสูญเสีย REDUCTION_DEFAULT

พารามิเตอร์
ไม่ Ops ของ TensorFlow

MeanAbsoluteError สาธารณะ (Ops tf, การลด การ ลด)

สร้าง MeanAbsoluteError Loss โดยใช้ getSimpleName() เป็นชื่อการสูญเสีย

พารามิเตอร์
ไม่ Ops ของ TensorFlow
การลดน้อยลง ประเภทของส่วนลดที่จะใช้กับการสูญเสีย

MeanAbsoluteError สาธารณะ (Ops tf ชื่อสตริง ลดการลด )

สร้าง MeanAbsoluteError

พารามิเตอร์
ไม่ Ops ของ TensorFlow
ชื่อ ชื่อของการสูญเสีย
การลดน้อยลง ประเภทของส่วนลดที่จะใช้กับการสูญเสีย

วิธีการสาธารณะ

ตัวดำเนินการ สาธารณะ <T> โทร ( ตัวดำเนินการ <? ขยาย TNumber > ป้ายกำกับ, ตัวดำเนินการ <T> การคาดการณ์, ตัวดำเนินการ <T> ตัวอย่างน้ำหนัก)

สร้างตัวถูกดำเนินการที่คำนวณการสูญเสีย

พารามิเตอร์
ฉลาก ค่าความจริงหรือป้ายกำกับ
การคาดการณ์ การคาดการณ์
ตัวอย่างน้ำหนัก SampleWeights ที่เป็นตัวเลือกจะทำหน้าที่เป็นสัมประสิทธิ์การสูญเสีย หากมีการระบุสเกลาร์ การสูญเสียก็จะถูกปรับขนาดตามค่าที่กำหนด หาก SampleWeights เป็นเทนเซอร์ที่มีขนาด [batch_size] ค่าที่สูญเสียทั้งหมดสำหรับแต่ละตัวอย่างในแบตช์จะถูกปรับขนาดใหม่โดยองค์ประกอบที่เกี่ยวข้องในเวกเตอร์ SampleWeights หากรูปร่างของ SampleWeights คือ [batch_size, d0, .. dN-1] (หรือสามารถถ่ายทอดไปยังรูปร่างนี้ได้) ดังนั้น องค์ประกอบที่สูญเสียแต่ละรายการของการคาดการณ์จะถูกปรับขนาดตามค่าที่สอดคล้องกันของ SampleWeights (หมายเหตุสำหรับ dN-1: ฟังก์ชันการสูญเสียทั้งหมดลดลง 1 มิติ โดยปกติจะเป็นแกน=-1)
การส่งคืน
  • การสูญเสีย