View source on GitHub |
A TensorSpec
that specifies minimum and maximum values.
Inherits From: TensorSpec
tf.contrib.framework.BoundedTensorSpec(
shape, dtype, minimum, maximum, name=None
)
Example usage:
spec = tensor_spec.BoundedTensorSpec((1, 2, 3), tf.float32, 0, (5, 5, 5))
tf_minimum = tf.convert_to_tensor(spec.minimum, dtype=spec.dtype)
tf_maximum = tf.convert_to_tensor(spec.maximum, dtype=spec.dtype)
Bounds are meant to be inclusive. This is especially important for integer types. The following spec will be satisfied by tensors with values in the set {0, 1, 2}:
spec = tensor_spec.BoundedTensorSpec((3, 5), tf.int32, 0, 2)
Args | |
---|---|
shape
|
Value convertible to tf.TensorShape . The shape of the tensor.
|
dtype
|
Value convertible to tf.DType . The type of the tensor values.
|
minimum
|
Number or sequence specifying the minimum element bounds
(inclusive). Must be broadcastable to shape .
|
maximum
|
Number or sequence specifying the maximum element bounds
(inclusive). Must be broadcastable to shape .
|
name
|
Optional string containing a semantic name for the corresponding
array. Defaults to None .
|
Raises | |
---|---|
ValueError
|
If minimum or maximum are not provided or not
broadcastable to shape .
|
TypeError
|
If the shape is not an iterable or if the dtype is an invalid
numpy dtype.
|
Attributes | |
---|---|
dtype
|
Returns the dtype of elements in the tensor.
|
maximum
|
Returns a NumPy array specifying the maximum bounds (inclusive). |
minimum
|
Returns a NumPy array specifying the minimum bounds (inclusive). |
name
|
Returns the (optionally provided) name of the described tensor. |
shape
|
Returns the TensorShape that represents the shape of the tensor.
|
value_type
|
Methods
from_spec
@classmethod
from_spec( spec )
from_tensor
@classmethod
from_tensor( tensor, name=None )
is_compatible_with
is_compatible_with(
spec_or_tensor
)
Returns True if spec_or_tensor is compatible with this TensorSpec.
Two tensors are considered compatible if they have the same dtype
and their shapes are compatible (see tf.TensorShape.is_compatible_with
).
Args | |
---|---|
spec_or_tensor
|
A tf.TensorSpec or a tf.Tensor |
Returns | |
---|---|
True if spec_or_tensor is compatible with self. |
most_specific_compatible_type
most_specific_compatible_type(
other
)
Returns the most specific TypeSpec compatible with self
and other
.
Args | |
---|---|
other
|
A TypeSpec .
|
Raises | |
---|---|
ValueError
|
If there is no TypeSpec that is compatible with both self
and other .
|
__eq__
__eq__(
other
)
Return self==value.
__ne__
__ne__(
other
)
Return self!=value.