tf.keras.backend.in_top_k
Stay organized with collections
Save and categorize content based on your preferences.
Returns whether the targets
are in the top k
predictions
.
tf.keras.backend.in_top_k(
predictions, targets, k
)
Arguments |
predictions
|
A tensor of shape (batch_size, classes) and type float32 .
|
targets
|
A 1D tensor of length batch_size and type int32 or int64 .
|
k
|
An int , number of top elements to consider.
|
Returns |
A 1D tensor of length batch_size and type bool .
output[i] is True if predictions[i, targets[i]] is within top-k
values of predictions[i] .
|
Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.
Last updated 2020-10-01 UTC.
[null,null,["Last updated 2020-10-01 UTC."],[],[],null,["# tf.keras.backend.in_top_k\n\n\u003cbr /\u003e\n\n|--------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|\n| [TensorFlow 2 version](/api_docs/python/tf/keras/backend/in_top_k) | [View source on GitHub](https://github.com/tensorflow/tensorflow/blob/v1.15.0/tensorflow/python/keras/backend.py#L4569-L4583) |\n\nReturns whether the `targets` are in the top `k` `predictions`.\n\n#### View aliases\n\n\n**Compat aliases for migration**\n\nSee\n[Migration guide](https://www.tensorflow.org/guide/migrate) for\nmore details.\n\n[`tf.compat.v1.keras.backend.in_top_k`](/api_docs/python/tf/keras/backend/in_top_k), \\`tf.compat.v2.keras.backend.in_top_k\\`\n\n\u003cbr /\u003e\n\n tf.keras.backend.in_top_k(\n predictions, targets, k\n )\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Arguments --------- ||\n|---------------|-----------------------------------------------------------------|\n| `predictions` | A tensor of shape `(batch_size, classes)` and type `float32`. |\n| `targets` | A 1D tensor of length `batch_size` and type `int32` or `int64`. |\n| `k` | An `int`, number of top elements to consider. |\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n| Returns ------- ||\n|---|---|\n| A 1D tensor of length `batch_size` and type `bool`. `output[i]` is `True` if `predictions[i, targets[i]]` is within top-`k` values of `predictions[i]`. ||\n\n\u003cbr /\u003e"]]