FixedUnigramCandidateSampler.Options
Оптимизируйте свои подборки
Сохраняйте и классифицируйте контент в соответствии со своими настройками.
Унаследованные методы
Из класса java.lang.Object логическое значение | равно (Объект arg0) |
последний класс<?> | получитьКласс () |
интервал | хэш-код () |
окончательная пустота | поставить в известность () |
окончательная пустота | уведомитьВсе () |
Нить | нанизывать () |
окончательная пустота | подождать (длинный arg0, int arg1) |
окончательная пустота | подождите (длинный arg0) |
окончательная пустота | ждать () |
Публичные методы
Параметры
искажение | Искажение используется для искажения распределения вероятностей униграмм. Каждый вес сначала увеличивается до степени искажения, а затем добавляется к внутреннему распределению униграмм. В результате искажение = 1,0 дает регулярную выборку униграмм (как определено в файле словаря), а искажение = 0,0 дает равномерное распределение. |
---|
Параметры
numReservedIds | При желании пользователи могут добавить некоторые зарезервированные идентификаторы в диапазоне [0, ..., num_reserved_ids). Один из вариантов использования заключается в том, что в качестве идентификатора 0 используется специальный токен неизвестного слова. Вероятность выборки этих идентификаторов будет равна 0. |
---|
Параметры
число осколков | Сэмплер можно использовать для выборки из подмножества исходного диапазона, чтобы ускорить все вычисления за счет параллелизма. Этот параметр (вместе с «shard») указывает количество разделов, которые используются в общих вычислениях. |
---|
Параметры
семя | Если для начального числа или начального числа2 задано ненулевое значение, генератор случайных чисел заполняется данным начальным числом. В противном случае он засеивается случайным семенем. |
---|
Параметры
семя2 | Второе семя, чтобы избежать столкновения семян. |
---|
Параметры
осколок | Сэмплер можно использовать для выборки из подмножества исходного диапазона, чтобы ускорить все вычисления за счет параллелизма. Этот параметр (вместе с «num_shards») указывает конкретный номер раздела операции сэмплера, когда используется секционирование. |
---|
общедоступные униграммы FixUnigramCandidateSampler.Options (униграммы List<Float>)
Параметры
униграммы | Список чисел или вероятностей униграмм, по одному на каждый идентификатор в последовательном порядке. В эту операцию следует передать ровно один из vocab_file и униграмм. |
---|
Параметры
vocabFile | Каждая допустимая строка в этом файле (который должен иметь формат, подобный CSV) соответствует допустимому идентификатору слова. Идентификаторы располагаются последовательно, начиная с num_reserved_ids. Ожидается, что последняя запись в каждой строке будет значением, соответствующим количеству или относительной вероятности. В эту операцию необходимо передать ровно один из vocab_file и униграмм. |
---|
Если не указано иное, контент на этой странице предоставляется по лицензии Creative Commons "С указанием авторства 4.0", а примеры кода – по лицензии Apache 2.0. Подробнее об этом написано в правилах сайта. Java – это зарегистрированный товарный знак корпорации Oracle и ее аффилированных лиц.
Последнее обновление: 2025-07-26 UTC.
[null,null,["Последнее обновление: 2025-07-26 UTC."],[],[],null,["# FixedUnigramCandidateSampler.Options\n\npublic static class **FixedUnigramCandidateSampler.Options** \nOptional attributes for [FixedUnigramCandidateSampler](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler) \n\n### Public Methods\n\n|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [distortion](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#distortion(java.lang.Float))(Float distortion) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [numReservedIds](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#numReservedIds(java.lang.Long))(Long numReservedIds) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [numShards](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#numShards(java.lang.Long))(Long numShards) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [seed](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#seed(java.lang.Long))(Long seed) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [seed2](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#seed2(java.lang.Long))(Long seed2) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [shard](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#shard(java.lang.Long))(Long shard) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [unigrams](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#unigrams(java.util.List\u003cjava.lang.Float\u003e))(List\\\u003cFloat\\\u003e unigrams) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [vocabFile](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#vocabFile(java.lang.String))(String vocabFile) |\n\n### Inherited Methods\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nPublic Methods\n--------------\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**distortion**\n(Float distortion)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| distortion | The distortion is used to skew the unigram probability distribution. Each weight is first raised to the distortion's power before adding to the internal unigram distribution. As a result, distortion = 1.0 gives regular unigram sampling (as defined by the vocab file), and distortion = 0.0 gives a uniform distribution. |\n|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**numReservedIds**\n(Long numReservedIds)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| numReservedIds | Optionally some reserved IDs can be added in the range \\[0, ..., num_reserved_ids) by the users. One use case is that a special unknown word token is used as ID 0. These IDs will have a sampling probability of 0. |\n|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**numShards**\n(Long numShards)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| numShards | A sampler can be used to sample from a subset of the original range in order to speed up the whole computation through parallelism. This parameter (together with 'shard') indicates the number of partitions that are being used in the overall computation. |\n|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**seed**\n(Long seed)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| seed | If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. |\n|------|----------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**seed2**\n(Long seed2)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| seed2 | An second seed to avoid seed collision. |\n|-------|-----------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**shard**\n(Long shard)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| shard | A sampler can be used to sample from a subset of the original range in order to speed up the whole computation through parallelism. This parameter (together with 'num_shards') indicates the particular partition number of a sampler op, when partitioning is being used. |\n|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**unigrams**\n(List\\\u003cFloat\\\u003e unigrams)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| unigrams | A list of unigram counts or probabilities, one per ID in sequential order. Exactly one of vocab_file and unigrams should be passed to this op. |\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**vocabFile**\n(String vocabFile)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| vocabFile | Each valid line in this file (which should have a CSV-like format) corresponds to a valid word ID. IDs are in sequential order, starting from num_reserved_ids. The last entry in each line is expected to be a value corresponding to the count or relative probability. Exactly one of vocab_file and unigrams needs to be passed to this op. |\n|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|"]]