GPUOptions kelas akhir statis publik.Eksperimental
Tipe protobuf tensorflow.GPUOptions.Experimental
Kelas Bersarang
kelas | GPUOptions.Eksperimental.Builder | Tipe protobuf tensorflow.GPUOptions.Experimental | |
kelas | Opsi GPU.Eksperimental.Perangkat Virtual | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
antarmuka | GPUOptions.Experimental.VirtualDevicesOrBuilder |
Konstanta
ke dalam | COLLECTIVE_RING_ORDER_FIELD_NUMBER | |
ke dalam | KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER | |
ke dalam | KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER | |
ke dalam | KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER | |
ke dalam | NUM_DEV_TO_DEV_COPY_STRREAMS_FIELD_NUMBER | |
ke dalam | TIMESTAMPED_ALLOCATOR_FIELD_NUMBER | |
ke dalam | USE_UNIFIED_MEMORY_FIELD_NUMBER | |
ke dalam | VIRTUAL_DEVICES_FIELD_NUMBER |
Metode Publik
boolean | sama dengan (Objek objek) |
Rangkaian | dapatkanCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
Opsi GPU statis. Eksperimental | |
Opsi GPU.Eksperimental | |
com.google.protobuf.Descriptors.Descriptor statis terakhir | |
ke dalam | dapatkanKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
ke dalam | dapatkanKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
ke dalam | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
ke dalam | getNumDevToDevCopyStream () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
ke dalam | |
boolean | dapatkan Pengalokasi Waktu () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
final com.google.protobuf.UnknownFieldSet | |
boolean | dapatkanUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
Opsi GPU.Eksperimental.Perangkat Virtual | getVirtualDevices (indeks int) The multi virtual device settings. |
ke dalam | dapatkanVirtualDevicesCount () The multi virtual device settings. |
Daftar< GPUOptions.Experimental.VirtualDevices > | dapatkanDaftar PerangkatVirtual () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (indeks int) The multi virtual device settings. |
Daftar<? memperluas GPUOptions.Experimental.VirtualDevicesOrBuilder > | dapatkanVirtualDevicesOrBuilderList () The multi virtual device settings. |
ke dalam | Kode hash () |
boolean terakhir | |
GPUOptions.Eksperimental.Builder statis | newBuilder ( GPUOptions.Prototipe eksperimental) |
GPUOptions.Eksperimental.Builder statis | |
GPUOptions.Eksperimental.Builder | |
Opsi GPU statis. Eksperimental | parseDelimitedFrom (masukan Aliran Masukan) |
Opsi GPU statis. Eksperimental | parseDelimitedFrom (masukan InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opsi GPU statis. Eksperimental | parseFrom (data ByteBuffer) |
Opsi GPU statis. Eksperimental | parseFrom (com.google.protobuf.CodedInputStream masukan, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opsi GPU statis. Eksperimental | parseFrom (data ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opsi GPU statis. Eksperimental | parseFrom (com.google.protobuf.CodedInputStream masukan) |
Opsi GPU statis. Eksperimental | parseFrom (byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opsi GPU statis. Eksperimental | parseFrom (com.google.protobuf.ByteString data) |
Opsi GPU statis. Eksperimental | parseFrom (masukan InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
Opsi GPU statis. Eksperimental | parseFrom (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
statis | pengurai () |
GPUOptions.Eksperimental.Builder | |
ruang kosong | writeTo (com.google.protobuf.CodedOutputStream keluaran) |
Metode Warisan
Konstanta
int final statis publik COLLECTIVE_RING_ORDER_FIELD_NUMBER
Nilai Konstan: 4
int final statis publik KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
Nilai Konstan: 8
int akhir statis publik KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
Nilai Konstan: 7
int final statis publik KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
Nilai Konstan: 9
int final statis publik NUM_DEV_TO_DEV_COPY_STRREAMS_FIELD_NUMBER
Nilai Konstan: 3
int final statis publik TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
Nilai Konstan: 5
int akhir statis publik USE_UNIFIED_MEMORY_FIELD_NUMBER
Nilai Konstan: 2
int final statis publik VIRTUAL_DEVICES_FIELD_NUMBER
Nilai Konstan: 1
Metode Publik
boolean publik sama (Obj objek)
String publik getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
publik com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
int publik getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
int publik getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
int publik getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
int publik getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
publik dapatkanParserForType ()
publik int getSerializedSize ()
boolean publik getTimestampedAllocator ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
public final com.google.protobuf.UnknownFieldSet getUnknownFields ()
boolean publik getUseUnifiedMemory ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
GPUOptions.Experimental.VirtualDevices publik getVirtualDevices (int indeks)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
publik int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
Daftar publik< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
GPUOptions.Experimental.VirtualDevicesOrBuilder publik getVirtualDevicesOrBuilder (int indeks)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
Daftar Publik<? memperluas GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
kode hash int publik ()
boolean akhir publik diinisialisasi ()
GPUOptions statis publik. ParseDelimitedFrom eksperimental (input InputStream)
Melempar
Pengecualian IO |
---|
GPUOptions statis publik. ParseDelimitedFrom eksperimental (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
Pengecualian IO |
---|
GPUOptions statis publik. ParseFrom eksperimental (data ByteBuffer)
Melempar
InvalidProtocolBufferException |
---|
GPUOptions statis publik. ParseFrom eksperimental (com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
Pengecualian IO |
---|
GPUOptions statis publik. ParseFrom eksperimental (data ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
InvalidProtocolBufferException |
---|
GPUOptions statis publik. ParseFrom eksperimental (com.google.protobuf.CodedInputStream input)
Melempar
Pengecualian IO |
---|
GPUOptions statis publik. ParseFrom eksperimental (byte[] data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
InvalidProtocolBufferException |
---|
GPUOptions statis publik. ParseFrom eksperimental (com.google.protobuf.ByteString data)
Melempar
InvalidProtocolBufferException |
---|
GPUOptions statis publik. ParseFrom eksperimental (input InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
Pengecualian IO |
---|
GPUOptions statis publik. ParseFrom eksperimental (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Melempar
InvalidProtocolBufferException |
---|
statis publik pengurai ()
public void writeTo (keluaran com.google.protobuf.CodedOutputStream)
Melempar
Pengecualian IO |
---|