SingleElementSequence
컬렉션을 사용해 정리하기
내 환경설정을 기준으로 콘텐츠를 저장하고 분류하세요.
상속된 메서드
java.lang.Object 클래스에서 부울 | 같음 (개체 arg0) |
마지막 수업<?> | getClass () |
정수 | 해시코드 () |
최종 무효 | 알림 () |
최종 무효 | 통지모두 () |
끈 | toString () |
최종 무효 | 대기 (long arg0, int arg1) |
최종 무효 | 기다리세요 (긴 arg0) |
최종 무효 | 기다리다 () |
인터페이스 java.lang.Iterable에서 추상적인 공백 | forEach (소비자<? super T> arg0) |
추상 Iterator<U는 NdArray <T>>를 확장합니다. | 반복자 () |
추상 Spliterator<U 확장 NdArray <T>> | 분할기 () |
공개 방법
각 요소를 새 슬라이스로 반환합니다.
기존 Java 컬렉션과 달리 NdArraySequence
의 요소는 일시적입니다. 즉, 각 반복마다 새로운 NdArray
인스턴스가 할당됩니다. 성능을 향상시키기 위해 DataBufferWindow
사용하여 동일한 인스턴스를 재활용하여 이 시퀀스의 모든 요소를 볼 수 있습니다.
그러나 어떤 경우에는 반환된 각 요소가 원래 배열의 새로운 조각인지 확인하기 위해 이러한 최적화를 비활성화하는 것이 더 나을 수도 있습니다. 예를 들어, 방문한 하나 이상의 요소가 시퀀스 반복 범위를 벗어나야 하는 경우 asSlices()
시퀀스에서 반환된 모든 요소가 고유한 인스턴스인지 확인합니다.
final List<IntNdArray> vectors = new ArrayList<>();
IntNdArray matrix = NdArrays.ofInts(Shape.of(6, 6));
ndArray.elements(0).forEach(e -> vectors::add); // Not safe, as `e` might always be the same recycled instance
ndArray.elements(0).asSlices().forEach(e -> vectors::add); // Safe, each `e` is a distinct NdArray instance
보고
- 새로운 슬라이스로 반복되는 각 요소를 반환하는 시퀀스
공개 무효 forEachIndexed (BiConsumer<long[], U> 소비자)
달리 명시되지 않는 한 이 페이지의 콘텐츠에는 Creative Commons Attribution 4.0 라이선스에 따라 라이선스가 부여되며, 코드 샘플에는 Apache 2.0 라이선스에 따라 라이선스가 부여됩니다. 자세한 내용은 Google Developers 사이트 정책을 참조하세요. 자바는 Oracle 및/또는 Oracle 계열사의 등록 상표입니다.
최종 업데이트: 2025-07-26(UTC)
[null,null,["최종 업데이트: 2025-07-26(UTC)"],[],[],null,["# SingleElementSequence\n\npublic final class **SingleElementSequence** \nA sequence of one single element \n\n### Public Constructors\n\n|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| | [SingleElementSequence](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence#SingleElementSequence(org.tensorflow.ndarray.impl.AbstractNdArray\u003cT, U\u003e))([AbstractNdArray](/jvm/api_docs/java/org/tensorflow/ndarray/impl/AbstractNdArray)\\\u003cT, U\\\u003e ndArray) |\n\n### Public Methods\n\n|-----------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence)\\\u003cU\\\u003e | [asSlices](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence#asSlices())() Returns each element as a new slice. |\n| void | [forEachIndexed](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence#forEachIndexed(java.util.function.BiConsumer\u003clong[], U\u003e))(BiConsumer\\\u003clong\\[\\], U\\\u003e consumer) |\n| Iterator\\\u003cU\\\u003e | [iterator](/jvm/api_docs/java/org/tensorflow/ndarray/impl/sequence/SingleElementSequence#iterator())() |\n\n### Inherited Methods\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.ndarray.NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence) \n\n|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence)\\\u003cU extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | [asSlices](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence#asSlices())() Returns each element as a new slice. |\n| abstract void | [forEachIndexed](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence#forEachIndexed(java.util.function.BiConsumer\u003clong[], T\u003e))(BiConsumer\\\u003clong\\[\\], U extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e consumer) Visit each elements of this iteration and their respective coordinates. |\n\nFrom interface java.lang.Iterable \n\n|-----------------------------------------------------------------------------------------------------|-------------------------------------|\n| abstract void | forEach(Consumer\\\u003c? super T\\\u003e arg0) |\n| abstract Iterator\\\u003cU extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | iterator() |\n| abstract Spliterator\\\u003cU extends [NdArray](/jvm/api_docs/java/org/tensorflow/ndarray/NdArray)\\\u003cT\\\u003e\\\u003e | spliterator() |\n\nPublic Constructors\n-------------------\n\n#### public\n**SingleElementSequence**\n([AbstractNdArray](/jvm/api_docs/java/org/tensorflow/ndarray/impl/AbstractNdArray)\\\u003cT, U\\\u003e ndArray)\n\n\u003cbr /\u003e\n\nPublic Methods\n--------------\n\n#### public [NdArraySequence](/jvm/api_docs/java/org/tensorflow/ndarray/NdArraySequence)\\\u003cU\\\u003e\n**asSlices**\n()\n\nReturns each element as a new slice.\n\nUnlike conventional Java collections, elements of a `NdArraySequence` are transient, i.e. new `NdArray`\ninstances are allocated for each iteration. To improve performance, the same instance can be recycled to view\nall elements of this sequence, using a [DataBufferWindow](/jvm/api_docs/java/org/tensorflow/ndarray/buffer/DataBufferWindow).\n\nIn some cases though, it might be preferable to disable such optimizations to ensure that each element returned is a\nnew slice of the original array. For example, if one or more elements visited must live beyond the scope of the sequence\niteration, `asSlices()` makes sure that all elements returned by the sequence are unique instances.\n\n final List\u003cIntNdArray\u003e vectors = new ArrayList\u003c\u003e();\n IntNdArray matrix = NdArrays.ofInts(Shape.of(6, 6));\n ndArray.elements(0).forEach(e -\u003e vectors::add); // Not safe, as `e` might always be the same recycled instance\n ndArray.elements(0).asSlices().forEach(e -\u003e vectors::add); // Safe, each `e` is a distinct NdArray instance\n \n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n##### Returns\n\n- a sequence that returns each elements iterated as a new slice \n\n#### public void\n**forEachIndexed**\n(BiConsumer\\\u003clong\\[\\], U\\\u003e consumer)\n\n\u003cbr /\u003e\n\n#### public Iterator\\\u003cU\\\u003e\n**iterator**\n()\n\n\u003cbr /\u003e"]]