Aprenda o que há de mais recente em aprendizado de máquina, IA generativa e muito mais no WiML Symposium 2023
Registre-se
FixedUnigramCandidateSampler.Options
Mantenha tudo organizado com as coleções
Salve e categorize o conteúdo com base nas suas preferências.
Métodos herdados
Da classe java.lang.Object boleano | equals (arg0 Object) |
aula final <?> | getClass () |
int | hashCode () |
vazio final | notificar () |
vazio final | notifyAll () |
Fragmento | toString () |
vazio final | wait (longa arg0, int arg1) |
vazio final | wait (arg0 de comprimento) |
vazio final | wait () |
Métodos Públicos
Parâmetros
distorção | A distorção é usada para distorcer a distribuição de probabilidade do unigrama. Cada peso é primeiro elevado à potência da distorção antes de ser adicionado à distribuição unigrama interna. Como resultado, distorção = 1,0 fornece amostragem unigrama regular (conforme definido pelo arquivo de vocabulário) e distorção = 0,0 fornece uma distribuição uniforme. |
---|
Parâmetros
numReservedIds | Opcionalmente, alguns IDs reservados podem ser adicionados no intervalo [0, ..., num_reserved_ids) pelos usuários. Um caso de uso é que um token de palavra desconhecida especial é usado como ID 0. Esses IDs terão uma probabilidade de amostragem de 0. |
---|
Parâmetros
numShards | Um amostrador pode ser usado para amostrar de um subconjunto do intervalo original para acelerar todo o cálculo por meio do paralelismo. Este parâmetro (junto com 'shard') indica o número de partições que estão sendo usadas na computação geral. |
---|
Parâmetros
semente | Se seed ou seed2 forem definidos como diferentes de zero, o gerador de número aleatório é propagado por um determinado seed. Caso contrário, é semeado por uma semente aleatória. |
---|
Parâmetros
seed2 | Uma segunda semente para evitar a colisão de sementes. |
---|
Parâmetros
fragmento | Um amostrador pode ser usado para amostrar de um subconjunto do intervalo original para acelerar todo o cálculo por meio do paralelismo. Este parâmetro (junto com 'num_shards') indica o número de partição particular de uma operação de amostrador, quando o particionamento está sendo usado. |
---|
Parâmetros
unigramas | Uma lista de contagens de unigrama ou probabilidades, uma por ID em ordem sequencial. Exatamente um de vocab_file e unigramas deve ser passado para este op. |
---|
Parâmetros
vocabulário | Cada linha válida neste arquivo (que deve ter um formato semelhante ao CSV) corresponde a um ID de palavra válido. Os IDs estão em ordem sequencial, começando em num_reserved_ids. Espera-se que a última entrada em cada linha seja um valor correspondente à contagem ou probabilidade relativa. Exatamente um de vocab_file e unigramas precisa ser passado para este op. |
---|
Exceto em caso de indicação contrária, o conteúdo desta página é licenciado de acordo com a Licença de atribuição 4.0 do Creative Commons, e as amostras de código são licenciadas de acordo com a Licença Apache 2.0. Para mais detalhes, consulte as políticas do site do Google Developers. Java é uma marca registrada da Oracle e/ou afiliadas.
Última atualização 2021-11-29 UTC.
[null,null,["Última atualização 2021-11-29 UTC."],[],[],null,["# FixedUnigramCandidateSampler.Options\n\npublic static class **FixedUnigramCandidateSampler.Options** \nOptional attributes for [FixedUnigramCandidateSampler](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler) \n\n### Public Methods\n\n|----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [distortion](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#distortion(java.lang.Float))(Float distortion) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [numReservedIds](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#numReservedIds(java.lang.Long))(Long numReservedIds) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [numShards](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#numShards(java.lang.Long))(Long numShards) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [seed](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#seed(java.lang.Long))(Long seed) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [seed2](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#seed2(java.lang.Long))(Long seed2) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [shard](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#shard(java.lang.Long))(Long shard) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [unigrams](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#unigrams(java.util.List\u003cjava.lang.Float\u003e))(List\\\u003cFloat\\\u003e unigrams) |\n| [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options) | [vocabFile](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options#vocabFile(java.lang.String))(String vocabFile) |\n\n### Inherited Methods\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nPublic Methods\n--------------\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**distortion**\n(Float distortion)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| distortion | The distortion is used to skew the unigram probability distribution. Each weight is first raised to the distortion's power before adding to the internal unigram distribution. As a result, distortion = 1.0 gives regular unigram sampling (as defined by the vocab file), and distortion = 0.0 gives a uniform distribution. |\n|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**numReservedIds**\n(Long numReservedIds)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| numReservedIds | Optionally some reserved IDs can be added in the range \\[0, ..., num_reserved_ids) by the users. One use case is that a special unknown word token is used as ID 0. These IDs will have a sampling probability of 0. |\n|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**numShards**\n(Long numShards)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| numShards | A sampler can be used to sample from a subset of the original range in order to speed up the whole computation through parallelism. This parameter (together with 'shard') indicates the number of partitions that are being used in the overall computation. |\n|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**seed**\n(Long seed)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| seed | If either seed or seed2 are set to be non-zero, the random number generator is seeded by the given seed. Otherwise, it is seeded by a random seed. |\n|------|----------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**seed2**\n(Long seed2)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| seed2 | An second seed to avoid seed collision. |\n|-------|-----------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**shard**\n(Long shard)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| shard | A sampler can be used to sample from a subset of the original range in order to speed up the whole computation through parallelism. This parameter (together with 'num_shards') indicates the particular partition number of a sampler op, when partitioning is being used. |\n|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**unigrams**\n(List\\\u003cFloat\\\u003e unigrams)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| unigrams | A list of unigram counts or probabilities, one per ID in sequential order. Exactly one of vocab_file and unigrams should be passed to this op. |\n|----------|------------------------------------------------------------------------------------------------------------------------------------------------|\n\n#### public [FixedUnigramCandidateSampler.Options](/jvm/api_docs/java/org/tensorflow/op/nn/FixedUnigramCandidateSampler.Options)\n**vocabFile**\n(String vocabFile)\n\n\u003cbr /\u003e\n\n##### Parameters\n\n| vocabFile | Each valid line in this file (which should have a CSV-like format) corresponds to a valid word ID. IDs are in sequential order, starting from num_reserved_ids. The last entry in each line is expected to be a value corresponding to the count or relative probability. Exactly one of vocab_file and unigrams needs to be passed to this op. |\n|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|"]]