Session configuration parameters. The system picks appropriate values for fields that are not set.
tensorflow.ConfigProto
מסוג Protobuf.ConfigProto שיטות ציבוריות
ConfigProto.Builder | addAllDeviceFilters (ערכים ניתנים להחזרה<String>) When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | addAllSessionInterOpThreadPool (Iterable<? מרחיב את ThreadPoolOptionProto > ערכים) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | addDeviceFilters (ערך מחרוזת) When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | addDeviceFiltersBytes (ערך com.google.protobuf.ByteString) When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | addRepeatedField (שדה com.google.protobuf.Descriptors.FieldDescriptor, ערך אובייקט) |
ConfigProto.Builder | addSessionInterOpThreadPool (ערך ThreadPoolOptionProto ) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | addSessionInterOpThreadPool (int index, ThreadPoolOptionProto ערך) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | addSessionInterOpThreadPool ( ThreadPoolOptionProto.Builder builderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | addSessionInterOpThreadPool (int index, ThreadPoolOptionProto.Builder builderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProto.Builder | addSessionInterOpThreadPoolBuilder (int index) This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProto.Builder | addSessionInterOpThreadPoolBuilder () This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto | לבנות () |
ConfigProto | buildPartial () |
ConfigProto.Builder | ברור () |
ConfigProto.Builder | clearAllowSoftPlacement () Whether soft placement is allowed. |
ConfigProto.Builder | clearClusterDef () Optional list of all workers to use in this session. |
ConfigProto.Builder | |
ConfigProto.Builder | clearDeviceFilters () When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | clearExperimental () .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Builder | clearField (שדה com.google.protobuf.Descriptors.FieldDescriptor) |
ConfigProto.Builder | clearGpuOptions () Options that apply to all GPUs. |
ConfigProto.Builder | clearGraphOptions () Options that apply to all graphs. |
ConfigProto.Builder | clearInterOpParallelismThreads () Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
ConfigProto.Builder | clearIntraOpParallelismThreads () The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
ConfigProto.Builder | clearIsolateSessionState () If true, any resources such as Variables used in the session will not be shared with other sessions. |
ConfigProto.Builder | clearLogDevicePlacement () Whether device placements should be logged. |
ConfigProto.Builder | clearOneof (com.google.protobuf.Descriptors.OneofDescriptor oneof) |
ConfigProto.Builder | clearOperationTimeoutInMs () Global timeout for all blocking operations in this session. |
ConfigProto.Builder | clearPlacementPeriod () Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
ConfigProto.Builder | clearRpcOptions () Options that apply when this session uses the distributed runtime. |
ConfigProto.Builder | clearSessionInterOpThreadPool () This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | clearShareClusterDevicesInSession () When true, WorkerSessions are created with device attributes from the full cluster. |
ConfigProto.Builder | clearUsePerSessionThreads () If true, use a new set of threads for this session rather than the global pool of threads. |
ConfigProto.Builder | שיבוט () |
בוליאני | containsDeviceCount (מפתח מחרוזת) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
בוליאני | getAllowSoftPlacement () Whether soft placement is allowed. |
ClusterDef | getClusterDef () Optional list of all workers to use in this session. |
ClusterDef.Builder | getClusterDefBuilder () Optional list of all workers to use in this session. |
ClusterDefOrBuilder | getClusterDefOrBuilder () Optional list of all workers to use in this session. |
ConfigProto | |
final static com.google.protobuf.Descriptors.Descriptor | |
com.google.protobuf.Descriptors.Descriptor | |
מפה<String, Integer> | getDeviceCount () השתמש ב- getDeviceCountMap() במקום זאת. |
int | getDeviceCountCount () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
מפה<String, Integer> | getDeviceCountMap () Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
int | getDeviceCountOrDefault (מפתח מחרוזת, int defaultValue) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
int | getDeviceCountOrThrow (מפתח מחרוזת) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
חוּט | getDeviceFilters (int index) When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ByteString | getDeviceFiltersBytes (int index) When any filters are present sessions will ignore all devices which do not match the filters. |
int | getDeviceFiltersCount () When any filters are present sessions will ignore all devices which do not match the filters. |
com.google.protobuf.ProtocolStringList | getDeviceFiltersList () When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Experimental | getExperimental () .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Experimental.Builder | getExperimentalBuilder () .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.ExperimentalOrBuilder | getExperimentalOrBuilder () .tensorflow.ConfigProto.Experimental experimental = 16; |
GPUOptions | getGpuOptions () Options that apply to all GPUs. |
GPUOptions.Builder | getGpuOptionsBuilder () Options that apply to all GPUs. |
GPUOptionsOrBuilder | getGpuOptionsOrBuilder () Options that apply to all GPUs. |
GraphOptions | getGraphOptions () Options that apply to all graphs. |
GraphOptions.Builder | getGraphOptionsBuilder () Options that apply to all graphs. |
GraphOptionsOrBuilder | getGraphOptionsOrBuilder () Options that apply to all graphs. |
int | getInterOpParallelismThreads () Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
int | getIntraOpParallelismThreads () The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
בוליאני | getIsolateSessionState () If true, any resources such as Variables used in the session will not be shared with other sessions. |
בוליאני | getLogDevicePlacement () Whether device placements should be logged. |
מפה<String, Integer> | getMutableDeviceCount () השתמש במקום זאת באביזרי מוטציה חלופיים. |
אָרוֹך | getOperationTimeoutInMs () Global timeout for all blocking operations in this session. |
int | getPlacementPeriod () Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
RPCOptions | getRpcOptions () Options that apply when this session uses the distributed runtime. |
RPCOptions.Builder | getRpcOptionsBuilder () Options that apply when this session uses the distributed runtime. |
RPCOptionsOrBuilder | getRpcOptionsOrBuilder () Options that apply when this session uses the distributed runtime. |
ThreadPoolOptionProto | getSessionInterOpThreadPool (int index) This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProto.Builder | getSessionInterOpThreadPoolBuilder (int index) This option is experimental - it may be replaced with a different mechanism in the future. |
רשימה< ThreadPoolOptionProto.Builder > | getSessionInterOpThreadPoolBuilderList () This option is experimental - it may be replaced with a different mechanism in the future. |
int | getSessionInterOpThreadPoolCount () This option is experimental - it may be replaced with a different mechanism in the future. |
רשימה< ThreadPoolOptionProto > | getSessionInterOpThreadPoolList () This option is experimental - it may be replaced with a different mechanism in the future. |
ThreadPoolOptionProtoOrBuilder | getSessionInterOpThreadPoolOrBuilder (int index) This option is experimental - it may be replaced with a different mechanism in the future. |
רשימה<? מרחיב את ThreadPoolOptionProtoOrBuilder > | getSessionInterOpThreadPoolOrBuilderList () This option is experimental - it may be replaced with a different mechanism in the future. |
בוליאני | getShareClusterDevicesInSession () When true, WorkerSessions are created with device attributes from the full cluster. |
בוליאני | getUsePerSessionThreads () If true, use a new set of threads for this session rather than the global pool of threads. |
בוליאני | hasClusterDef () Optional list of all workers to use in this session. |
בוליאני | hasExperimental () .tensorflow.ConfigProto.Experimental experimental = 16; |
בוליאני | hasGpuOptions () Options that apply to all GPUs. |
בוליאני | hasGraphOptions () Options that apply to all graphs. |
בוליאני | hasRpcOptions () Options that apply when this session uses the distributed runtime. |
בוליאנית סופית | |
ConfigProto.Builder | |
ConfigProto.Builder | mergeExperimental (ערך ConfigProto.Experimental ) .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Builder | mergeFrom (com.google.protobuf.Message אחר) |
ConfigProto.Builder | mergeFrom (קלט com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
ConfigProto.Builder | |
ConfigProto.Builder | |
ConfigProto.Builder | mergeRpcOptions (ערך RPCOptions ) Options that apply when this session uses the distributed runtime. |
final ConfigProto.Builder | mergeUnknownFields (com.google.protobuf.UnknownFieldSet unknownFields) |
ConfigProto.Builder | putAllDeviceCount (ערכי Map<String, Integer>) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ConfigProto.Builder | putDeviceCount (מפתח מחרוזת, ערך int) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ConfigProto.Builder | removeDeviceCount (מפתח מחרוזת) Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. |
ConfigProto.Builder | removeSessionInterOpThreadPool (int index) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | setAllowSoftPlacement (ערך בוליאני) Whether soft placement is allowed. |
ConfigProto.Builder | setClusterDef ( ClusterDef.Builder builderForValue) Optional list of all workers to use in this session. |
ConfigProto.Builder | |
ConfigProto.Builder | setDeviceFilters (אינדקס int, ערך מחרוזת) When any filters are present sessions will ignore all devices which do not match the filters. |
ConfigProto.Builder | setExperimental (ערך ConfigProto.Experimental ) .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Builder | setExperimental ( ConfigProto.Experimental.Builder builderForValue) .tensorflow.ConfigProto.Experimental experimental = 16; |
ConfigProto.Builder | setField (שדה com.google.protobuf.Descriptors.FieldDescriptor, ערך אובייקט) |
ConfigProto.Builder | |
ConfigProto.Builder | |
ConfigProto.Builder | |
ConfigProto.Builder | |
ConfigProto.Builder | setInterOpParallelismThreads (int value) Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. |
ConfigProto.Builder | setIntraOpParallelismThreads (int value) The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. |
ConfigProto.Builder | setIsolateSessionState (ערך בוליאני) If true, any resources such as Variables used in the session will not be shared with other sessions. |
ConfigProto.Builder | setLogDevicePlacement (ערך בוליאני) Whether device placements should be logged. |
ConfigProto.Builder | setOperationTimeoutInMs (ערך ארוך) Global timeout for all blocking operations in this session. |
ConfigProto.Builder | setPlacementPeriod (ערך int) Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically). |
ConfigProto.Builder | setRepeatedField (שדה com.google.protobuf.Descriptors.FieldDescriptor, אינדקס אינט, ערך אובייקט) |
ConfigProto.Builder | |
ConfigProto.Builder | setRpcOptions ( RPCOptions.Builder builderForValue) Options that apply when this session uses the distributed runtime. |
ConfigProto.Builder | setSessionInterOpThreadPool (int index, ThreadPoolOptionProto ערך) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | setSessionInterOpThreadPool (int index, ThreadPoolOptionProto.Builder builderForValue) This option is experimental - it may be replaced with a different mechanism in the future. |
ConfigProto.Builder | setShareClusterDevicesInSession (ערך בוליאני) When true, WorkerSessions are created with device attributes from the full cluster. |
final ConfigProto.Builder | setUnknownFields (com.google.protobuf.UnknownFieldSet unknownFields) |
ConfigProto.Builder | setUsePerSessionThreads (ערך בוליאני) If true, use a new set of threads for this session rather than the global pool of threads. |
שיטות בירושה
שיטות ציבוריות
public ConfigProto.Builder addAllDeviceFilters (ערכי <String> שניתן לבצע)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder addAllSessionInterOpThreadPool (Iterable<? מרחיב את ThreadPoolOptionProto > ערכים)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder addDeviceFilters (ערך מחרוזת)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder addDeviceFiltersBytes (ערך com.google.protobuf.ByteString)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder addRepeatedField (שדה com.google.protobuf.Descriptors.FieldDescriptor, ערך אובייקט)
public ConfigProto.Builder addSessionInterOpThreadPool (ערך ThreadPoolOptionProto )
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder addSessionInterOpThreadPool (int index, ThreadPoolOptionProto ערך)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder addSessionInterOpThreadPool ( ThreadPoolOptionProto.Builder builderForValue)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder addSessionInterOpThreadPool (int index, ThreadPoolOptionProto.Builder builderForValue)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ThreadPoolOptionProto.Builder addSessionInterOpThreadPoolBuilder (int index)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ThreadPoolOptionProto.Builder addSessionInterOpThreadPoolBuilder ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder clearAllowSoftPlacement ()
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
public ConfigProto.Builder clearClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ConfigProto.Builder clearDeviceFilters ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder clearExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Builder clearGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public ConfigProto.Builder clearGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public ConfigProto.Builder clearInterOpParallelismThreads ()
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
public ConfigProto.Builder clearIntraOpParallelismThreads ()
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
public ConfigProto.Builder clearIsolateSessionState ()
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
public ConfigProto.Builder clearLogDevicePlacement ()
Whether device placements should be logged.
bool log_device_placement = 8;
public ConfigProto.Builder clearOperationTimeoutInMs ()
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
public ConfigProto.Builder clearPlacementPeriod ()
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
public ConfigProto.Builder clearRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public ConfigProto.Builder clearSessionInterOpThreadPool ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder clearShareClusterDevicesInSession ()
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
public ConfigProto.Builder clearUsePerSessionThreads ()
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;
Public Boolean containsDeviceCount (מפתח מחרוזת)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
getAllowSoftPlacement בוליאני ציבורי ()
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
public ClusterDef getClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ClusterDef.Builder getClusterDefBuilder ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ClusterDefOrBuilder getClusterDefOrBuilder ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public static final com.google.protobuf.Descriptors.Descriptor getDescriptor ()
public com.google.protobuf.Descriptors.Descriptor getDescriptorForType ()
public int getDeviceCountCount ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
מפה ציבורית<String, Integer> getDeviceCountMap ()
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public int getDeviceCountOrDefault (מפתח מחרוזת, int defaultValue)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public int getDeviceCountOrThrow (מפתח מחרוזת)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
מחרוזת ציבורית getDeviceFilters (int index)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public com.google.protobuf.ByteString getDeviceFiltersBytes (int index)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public int getDeviceFiltersCount ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public com.google.protobuf.ProtocolStringList getDeviceFiltersList ()
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Experimental getExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Experimental.Builder getExperimentalBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.ExperimentalOrBuilder getExperimentalOrBuilder ()
.tensorflow.ConfigProto.Experimental experimental = 16;
GPUOptions ציבורי getGpuOptions ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public GPUOptions.Builder getGpuOptionsBuilder ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
Public GPUOptionsOrBuilder getGpuOptionsOrBuilder ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public GraphOptions getGraphOptions ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public GraphOptions.Builder getGraphOptionsBuilder ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public GraphOptionsOrBuilder getGraphOptionsOrBuilder ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public int getInterOpParallelismThreads ()
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
public int getIntraOpParallelismThreads ()
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
getIsolateSessionState בוליאני ציבורי ()
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
getLogDevicePlacement בוליאני ציבורי ()
Whether device placements should be logged.
bool log_device_placement = 8;
מפה ציבורית<String, Integer> getMutableDeviceCount ()
השתמש במקום זאת באביזרי מוטציה חלופיים.
public long getOperationTimeoutInMs ()
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
public int getPlacementPeriod ()
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
RPCOptions ציבוריים getRpcOptions ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public RPCOptions.Builder getRpcOptionsBuilder ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public RPCOptionsOrBuilder getRpcOptionsOrBuilder ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public ThreadPoolOptionProto getSessionInterOpThreadPool (int index)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ThreadPoolOptionProto.Builder getSessionInterOpThreadPoolBuilder (int index)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
רשימה ציבורית< ThreadPoolOptionProto.Builder > getSessionInterOpThreadPoolBuilderList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public int getSessionInterOpThreadPoolCount ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
רשימה ציבורית< ThreadPoolOptionProto > getSessionInterOpThreadPoolList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ThreadPoolOptionProtoOrBuilder getSessionInterOpThreadPoolOrBuilder (int index)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
רשימה ציבורית<? מרחיב את ThreadPoolOptionProtoOrBuilder > getSessionInterOpThreadPoolOrBuilderList ()
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
getShareClusterDevicesInSession ציבורי בוליאני ()
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
getUsePerSessionThreads בוליאני ציבורי ()
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;
בוליאני ציבורי hasClusterDef ()
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public Boolean hasExperimental ()
.tensorflow.ConfigProto.Experimental experimental = 16;
hasGpuOptions בוליאני ציבורי ()
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
יש GraphOptions בוליאני ציבורי ()
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
hasRpcOptions בוליאני ציבורי ()
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
בוליאני הסופי הציבורי הוא אתחול ()
public ConfigProto.Builder mergeClusterDef (ערך ClusterDef )
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ConfigProto.Builder mergeExperimental (ערך ConfigProto.Experimental )
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Builder mergeFrom (קלט com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
זורק
IOException |
---|
public ConfigProto.Builder mergeGpuOptions (ערך GPUOptions )
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public ConfigProto.Builder mergeGraphOptions (ערך GraphOptions )
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public ConfigProto.Builder mergeRpcOptions (ערך RPCOptions )
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public final ConfigProto.Builder mergeUnknownFields (com.google.protobuf.UnknownFieldSet unknownFields)
public ConfigProto.Builder putAllDeviceCount (ערכי מפה<String, Integer>)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public ConfigProto.Builder putDeviceCount (מפתח מחרוזת, ערך int)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public ConfigProto.Builder removeDeviceCount (מפתח מחרוזת)
Map from device type name (e.g., "CPU" or "GPU" ) to maximum number of devices of that type to use. If a particular device type is not found in the map, the system picks an appropriate number.
map<string, int32> device_count = 1;
public ConfigProto.Builder removeSessionInterOpThreadPool (int index)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder setAllowSoftPlacement (ערך בוליאני)
Whether soft placement is allowed. If allow_soft_placement is true, an op will be placed on CPU if 1. there's no GPU implementation for the OP or 2. no GPU devices are known or registered or 3. need to co-locate with reftype input(s) which are from CPU.
bool allow_soft_placement = 7;
public ConfigProto.Builder setClusterDef ( ClusterDef.Builder builderForValue)
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ConfigProto.Builder setClusterDef (ערך ClusterDef )
Optional list of all workers to use in this session.
.tensorflow.ClusterDef cluster_def = 14;
public ConfigProto.Builder setDeviceFilters (אינדקס int, ערך מחרוזת)
When any filters are present sessions will ignore all devices which do not match the filters. Each filter can be partially specified, e.g. "/job:ps" "/job:worker/replica:3", etc.
repeated string device_filters = 4;
public ConfigProto.Builder setExperimental (ערך ConfigProto.Experimental )
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Builder setExperimental ( ConfigProto.Experimental.Builder builderForValue)
.tensorflow.ConfigProto.Experimental experimental = 16;
public ConfigProto.Builder setField (שדה com.google.protobuf.Descriptors.FieldDescriptor, ערך אובייקט)
public ConfigProto.Builder setGpuOptions ( GPUOptions.Builder builderForValue)
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public ConfigProto.Builder setGpuOptions (ערך GPUOptions )
Options that apply to all GPUs.
.tensorflow.GPUOptions gpu_options = 6;
public ConfigProto.Builder setGraphOptions ( GraphOptions.Builder builderForValue)
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public ConfigProto.Builder setGraphOptions (ערך GraphOptions )
Options that apply to all graphs.
.tensorflow.GraphOptions graph_options = 10;
public ConfigProto.Builder setInterOpParallelismThreads (ערך int)
Nodes that perform blocking operations are enqueued on a pool of inter_op_parallelism_threads available in each process. 0 means the system picks an appropriate number. Negative means all operations are performed in caller's thread. Note that the first Session created in the process sets the number of threads for all future sessions unless use_per_session_threads is true or session_inter_op_thread_pool is configured.
int32 inter_op_parallelism_threads = 5;
public ConfigProto.Builder setIntraOpParallelismThreads (ערך int)
The execution of an individual op (for some op types) can be parallelized on a pool of intra_op_parallelism_threads. 0 means the system picks an appropriate number. If you create an ordinary session, e.g., from Python or C++, then there is exactly one intra op thread pool per process. The first session created determines the number of threads in this pool. All subsequent sessions reuse/share this one global pool. There are notable exceptions to the default behavior describe above: 1. There is an environment variable for overriding this thread pool, named TF_OVERRIDE_GLOBAL_THREADPOOL. 2. When connecting to a server, such as a remote `tf.train.Server` instance, then this option will be ignored altogether.
int32 intra_op_parallelism_threads = 2;
public ConfigProto.Builder setIsolateSessionState (ערך בוליאני)
If true, any resources such as Variables used in the session will not be shared with other sessions. However, when clusterspec propagation is enabled, this field is ignored and sessions are always isolated.
bool isolate_session_state = 15;
public ConfigProto.Builder setLogDevicePlacement (ערך בוליאני)
Whether device placements should be logged.
bool log_device_placement = 8;
public ConfigProto.Builder setOperationTimeoutInMs (ערך ארוך)
Global timeout for all blocking operations in this session. If non-zero, and not overridden on a per-operation basis, this value will be used as the deadline for all blocking operations.
int64 operation_timeout_in_ms = 11;
public ConfigProto.Builder setPlacementPeriod (ערך int)
Assignment of Nodes to Devices is recomputed every placement_period steps until the system warms up (at which point the recomputation typically slows down automatically).
int32 placement_period = 3;
public ConfigProto.Builder setRepeatedField (שדה com.google.protobuf.Descriptors.FieldDescriptor, אינדקס int, ערך אובייקט)
public ConfigProto.Builder setRpcOptions (ערך RPCOptions )
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public ConfigProto.Builder setRpcOptions ( RPCOptions.Builder builderForValue)
Options that apply when this session uses the distributed runtime.
.tensorflow.RPCOptions rpc_options = 13;
public ConfigProto.Builder setSessionInterOpThreadPool (int index, ThreadPoolOptionProto ערך)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder setSessionInterOpThreadPool (int index, ThreadPoolOptionProto.Builder builderForValue)
This option is experimental - it may be replaced with a different mechanism in the future. Configures session thread pools. If this is configured, then RunOptions for a Run call can select the thread pool to use. The intended use is for when some session invocations need to run in a background pool limited to a small number of threads: - For example, a session may be configured to have one large pool (for regular compute) and one small pool (for periodic, low priority work); using the small pool is currently the mechanism for limiting the inter-op parallelism of the low priority work. Note that it does not limit the parallelism of work spawned by a single op kernel implementation. - Using this setting is normally not needed in training, but may help some serving use cases. - It is also generally recommended to set the global_name field of this proto, to avoid creating multiple large pools. It is typically better to run the non-low-priority work, even across sessions, in a single large pool.
repeated .tensorflow.ThreadPoolOptionProto session_inter_op_thread_pool = 12;
public ConfigProto.Builder setShareClusterDevicesInSession (ערך בוליאני)
When true, WorkerSessions are created with device attributes from the full cluster. This is helpful when a worker wants to partition a graph (for example during a PartitionedCallOp).
bool share_cluster_devices_in_session = 17;
public final ConfigProto.Builder setUnknownFields (com.google.protobuf.UnknownFieldSet unknownFields)
public ConfigProto.Builder setUsePerSessionThreads (ערך בוליאני)
If true, use a new set of threads for this session rather than the global pool of threads. Only supported by direct sessions. If false, use the global threads created by the first session, or the per-session thread pools configured by session_inter_op_thread_pool. This option is deprecated. The same effect can be achieved by setting session_inter_op_thread_pool to have one element, whose num_threads equals inter_op_parallelism_threads.
bool use_per_session_threads = 9;