classe final estática pública GPUOptions.Experimental
Tipo de protobuf tensorflow.GPUOptions.Experimental
Classes aninhadas
aula | GPUOptions.Experimental.Builder | Tipo de protobuf tensorflow.GPUOptions.Experimental | |
aula | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
interface | GPUOptions.Experimental.VirtualDevicesOrBuilder |
Constantes
interno | COLLECTIVE_RING_ORDER_FIELD_NUMBER | |
interno | KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER | |
interno | KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER | |
interno | KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER | |
interno | NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER | |
interno | TIMESTAMPED_ALLOCATOR_FIELD_NUMBER | |
interno | USE_UNIFIED_MEMORY_FIELD_NUMBER | |
interno | VIRTUAL_DEVICES_FIELD_NUMBER |
Métodos Públicos
booleano | é igual (objeto obj) |
Corda | getCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | getCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
GPUOptions estáticas.Experimental | |
GPUOptions.Experimental | |
final estático com.google.protobuf.Descriptors.Descriptor | |
interno | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
interno | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
interno | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
interno | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
interno | |
booleano | getTimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
final com.google.protobuf.UnknownFieldSet | |
booleano | getUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (índice interno) The multi virtual device settings. |
interno | getVirtualDevicesCount () The multi virtual device settings. |
Lista< GPUOptions.Experimental.VirtualDevices > | getVirtualDevicesList () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (índice interno) The multi virtual device settings. |
Lista<? estende GPUOptions.Experimental.VirtualDevicesOrBuilder > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
interno | código hash () |
booleano final | |
GPUOptions.Experimental.Builder estático | newBuilder ( GPUOptions.Protótipo experimental) |
GPUOptions.Experimental.Builder estático | |
GPUOptions.Experimental.Builder | |
GPUOptions estáticas.Experimental | parseDelimitedFrom (entrada InputStream) |
GPUOptions estáticas.Experimental | parseDelimitedFrom (entrada InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions estáticas.Experimental | parseFrom (dados de ByteBuffer) |
GPUOptions estáticas.Experimental | parseFrom (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions estáticas.Experimental | parseFrom (dados de ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions estáticas.Experimental | parseFrom (entrada com.google.protobuf.CodedInputStream) |
GPUOptions estáticas.Experimental | parseFrom (byte[] dados, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions estáticas.Experimental | parseFrom (dados com.google.protobuf.ByteString) |
GPUOptions estáticas.Experimental | parseFrom (entrada InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
GPUOptions estáticas.Experimental | parseFrom (dados com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry) |
estático | analisador () |
GPUOptions.Experimental.Builder | |
vazio | writeTo (saída com.google.protobuf.CodedOutputStream) |
Métodos herdados
Constantes
público estático final int COLLECTIVE_RING_ORDER_FIELD_NUMBER
Valor Constante: 4
público estático final int KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
Valor Constante: 8
público estático final int KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
Valor Constante: 7
público estático final int KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
Valor Constante: 9
público estático final int NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
Valor Constante: 3
público estático final int TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
Valor Constante: 5
público estático final int USE_UNIFIED_MEMORY_FIELD_NUMBER
Valor Constante: 2
público estático final int VIRTUAL_DEVICES_FIELD_NUMBER
Valor Constante: 1
Métodos Públicos
booleano público é igual (Object obj)
String pública getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
público com.google.protobuf.ByteString getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
final estático público com.google.protobuf.Descriptors.Descriptor getDescriptor ()
público int getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
público int getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
público int getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
público int getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
público getParserForType ()
público int getSerializedSize ()
getTimestampedAllocator booleano público ()
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
final público com.google.protobuf.UnknownFieldSet getUnknownFields ()
getUseUnifiedMemory booleano público ()
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
público GPUOptions.Experimental.VirtualDevices getVirtualDevices (índice int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
público int getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
lista pública< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
público GPUOptions.Experimental.VirtualDevicesOrBuilder getVirtualDevicesOrBuilder (índice int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
Lista pública<? estende GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
hashCode int público ()
público final booleano isInitialized ()
public static GPUOptions.Experimental parseDelimitedFrom (entrada InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lança
IOException |
---|
GPUOptions estática pública.Experimental parseFrom (dados ByteBuffer)
Lança
InvalidProtocolBufferException |
---|
GPUOptions.Experimental parseFrom estático público (entrada com.google.protobuf.CodedInputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lança
IOException |
---|
GPUOptions.Experimental parseFrom estático público (dados ByteBuffer, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lança
InvalidProtocolBufferException |
---|
GPUOptions.Experimental parseFrom estático público (entrada com.google.protobuf.CodedInputStream)
Lança
IOException |
---|
public static GPUOptions.Experimental parseFrom (byte[] dados, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lança
InvalidProtocolBufferException |
---|
GPUOptions.Experimental parseFrom estático público (dados com.google.protobuf.ByteString)
Lança
InvalidProtocolBufferException |
---|
public static GPUOptions.Experimental parseFrom (entrada InputStream, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lança
IOException |
---|
GPUOptions.Experimental parseFrom estático público (dados com.google.protobuf.ByteString, com.google.protobuf.ExtensionRegistryLite extensionRegistry)
Lança
InvalidProtocolBufferException |
---|
estática pública analisador ()
public void writeTo (saída com.google.protobuf.CodedOutputStream)
Lança
IOException |
---|