RewriterConfigOrBuilder

interface pública RewriterConfigOrBuilder
Subclasses indiretas conhecidas

Métodos Públicos

abstrato RewriterConfig.Toggle
getArithmeticOptimization ()
 Arithmetic optimizations (default is ON)
 e.g.
abstrato int
getArithmeticOptimizationValue ()
 Arithmetic optimizations (default is ON)
 e.g.
abstrato RewriterConfig.Toggle
getAutoMixedPrecision ()
 Optimize data types for CUDA (default is OFF).
abstrato RewriterConfig.Toggle
getAutoMixedPrecisionMkl ()
 Optimize data types for MKL (default is OFF).
abstrato int
getAutoMixedPrecisionMklValue ()
 Optimize data types for MKL (default is OFF).
abstrato int
getAutoMixedPrecisionValue ()
 Optimize data types for CUDA (default is OFF).
AutoParallelOptions abstratas
getAutoParallel ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
abstrato AutoParallelOptionsOrBuilder
getAutoParallelOrBuilder ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
abstrato RewriterConfig.Toggle
getCommonSubgraphElimination ()
 Common subgraph elimination (default is ON)
 e.g.
abstrato int
getCommonSubgraphEliminationValue ()
 Common subgraph elimination (default is ON)
 e.g.
abstrato RewriterConfig.Toggle
getConstantFolding ()
 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
abstrato int
getConstantFoldingValue ()
 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
abstrato RewriterConfig.CpuLayout
getCpuLayoutConversion ()
 CPU Conversion settings between NHCW and NCHW.
abstrato int
getCpuLayoutConversionValue ()
 CPU Conversion settings between NHCW and NCHW.
abstrato RewriterConfig.CustomGraphOptimizer
getCustomOptimizers (índice interno)
 list of CustomGraphOptimizers to apply.
abstrato int
getCustomOptimizersCount ()
 list of CustomGraphOptimizers to apply.
Lista abstrata< RewriterConfig.CustomGraphOptimizer >
getCustomOptimizersList ()
 list of CustomGraphOptimizers to apply.
abstrato RewriterConfig.CustomGraphOptimizerOrBuilder
getCustomOptimizersOrBuilder (índice interno)
 list of CustomGraphOptimizers to apply.
lista abstrata<? estende RewriterConfig.CustomGraphOptimizerOrBuilder >
getCustomOptimizersOrBuilderList ()
 list of CustomGraphOptimizers to apply.
abstrato RewriterConfig.Toggle
getDebugStripper ()
 Strips debug-related nodes from the graph (off by default).
abstrato int
getDebugStripperValue ()
 Strips debug-related nodes from the graph (off by default).
abstrato RewriterConfig.Toggle
getDependencyOptimization ()
 Control dependency optimizations (default is ON).
abstrato int
getDependencyOptimizationValue ()
 Control dependency optimizations (default is ON).
booleano abstrato
getDisableMetaOptimizer ()
 Disable the entire meta optimizer (off by default).
booleano abstrato
getDisableModelPruning ()
 If true, don't remove unnecessary ops from the graph
 
bool disable_model_pruning = 2;
booleano abstrato
getExperimentalDisableCompressedTensorOptimization ()
 Disable optimizations that assume compressed tensors.
booleano abstrato
getFailOnOptimizerErrors ()
 If true, any optimization pass failing will cause the MetaOptimizer to
 stop with an error.
abstrato RewriterConfig.Toggle
getFunctionOptimization ()
 Function optimizations (default is ON).
abstrato int
getFunctionOptimizationValue ()
 Function optimizations (default is ON).
abstrato RewriterConfig.Toggle
getImplementationSelector ()
 Enable the swap of kernel implementations based on the device placement
 (default is ON).
abstrato int
getImplementationSelectorValue ()
 Enable the swap of kernel implementations based on the device placement
 (default is ON).
abstrato VerifierConfig
getInterOptimizerVerifierConfig ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
abstrato VerifierConfigOrBuilder
getInterOptimizerVerifierConfigOrBuilder ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
abstrato RewriterConfig.Toggle
getLayoutOptimizer ()
 Optimize tensor layouts (default is ON)
 e.g.
abstrato int
getLayoutOptimizerValue ()
 Optimize tensor layouts (default is ON)
 e.g.
abstrato RewriterConfig.Toggle
getLoopOptimization ()
 Loop optimizations (default is ON).
abstrato int
getLoopOptimizationValue ()
 Loop optimizations (default is ON).
abstrato RewriterConfig.MemOptType
getMemoryOptimization ()
 Configures memory optimization passes through the meta-optimizer.
abstrato int
getMemoryOptimizationValue ()
 Configures memory optimization passes through the meta-optimizer.
cadeia abstrata
getMemoryOptimizerTargetNodeNameScope ()
 A node name scope for node names which are valid outputs of recomputations.
abstrato com.google.protobuf.ByteString
getMemoryOptimizerTargetNodeNameScopeBytes ()
 A node name scope for node names which are valid outputs of recomputations.
abstrato RewriterConfig.NumIterationsType
getMetaOptimizerIterations ()
 Controls how many times we run the optimizers in meta optimizer (default
 is once).
abstrato int
getMetaOptimizerIterationsValue ()
 Controls how many times we run the optimizers in meta optimizer (default
 is once).
abstrato longo
getMetaOptimizerTimeoutMs ()
 Maximum number of milliseconds to spend optimizing a single graph before
 timing out.
abstrato int
getMinGraphNodes ()
 The minimum number of nodes in a graph to optimizer.
cadeia abstrata
getOptimizers (índice interno)
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
abstrato com.google.protobuf.ByteString
getOptimizersBytes (índice interno)
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
abstrato int
getOptimizersCount ()
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
lista abstrata<String>
getOptimizersList ()
 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
abstrato RewriterConfig.Toggle
getPinToHostOptimization ()
 Force small ops onto the CPU (default is OFF).
abstrato int
getPinToHostOptimizationValue ()
 Force small ops onto the CPU (default is OFF).
abstrato VerifierConfig
getPostOptimizationVerifierConfig ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
abstrato VerifierConfigOrBuilder
getPostOptimizationVerifierConfigOrBuilder ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
abstrato RewriterConfig.Toggle
getRemapeamento ()
 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
abstrato int
getRemappingValue ()
 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
abstrato RewriterConfig.Toggle
getScopedAllocatorOptimization ()
 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
abstrato int
getScopedAllocatorOptimizationValue ()
 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
opções abstratas de ScopedAllocator
getScopedAllocatorOpts ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
resumo ScopedAllocatorOptionsOrBuilder
getScopedAllocatorOptsOrBuilder ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;
abstrato RewriterConfig.Toggle
getShapeOptimization ()
 Shape optimizations (default is ON)
 Simplify computations made on shapes.
abstrato int
getShapeOptimizationValue ()
 Shape optimizations (default is ON)
 Simplify computations made on shapes.
booleano abstrato
hasAutoParallel ()
 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
booleano abstrato
hasInterOptimizerVerifierConfig ()
 VerifierConfig specifying the verifiers to be run after every optimizer.
booleano abstrato
hasPostOptimizationVerifierConfig ()
 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
booleano abstrato
hasScopedAllocatorOpts ()
.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

Métodos Públicos

resumo público RewriterConfig.Toggle getArithmeticOptimization ()

 Arithmetic optimizations (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle arithmetic_optimization = 7;

público abstrato int getArithmeticOptimizationValue ()

 Arithmetic optimizations (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle arithmetic_optimization = 7;

resumo público RewriterConfig.Toggle getAutoMixedPrecision ()

 Optimize data types for CUDA (default is OFF).
 This will try to use float16 on GPU which is faster.
 Note that this can change the numerical stability of the graph and may
 require the use of loss scaling to maintain model convergence.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision = 23;

resumo público RewriterConfig.Toggle getAutoMixedPrecisionMkl ()

 Optimize data types for MKL (default is OFF).
 This will try to use bfloat16 on CPUs, which is faster.
 Note that this can change the numerical stability of the graph.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision_mkl = 25;

público abstrato int getAutoMixedPrecisionMklValue ()

 Optimize data types for MKL (default is OFF).
 This will try to use bfloat16 on CPUs, which is faster.
 Note that this can change the numerical stability of the graph.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision_mkl = 25;

público abstrato int getAutoMixedPrecisionValue ()

 Optimize data types for CUDA (default is OFF).
 This will try to use float16 on GPU which is faster.
 Note that this can change the numerical stability of the graph and may
 require the use of loss scaling to maintain model convergence.
 
.tensorflow.RewriterConfig.Toggle auto_mixed_precision = 23;

público abstrato AutoParallelOptions getAutoParallel ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

público abstrato AutoParallelOptionsOrBuilder getAutoParallelOrBuilder ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

resumo público RewriterConfig.Toggle getCommonSubgraphElimination ()

 Common subgraph elimination (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle common_subgraph_elimination = 24;

resumo público int getCommonSubgraphEliminationValue ()

 Common subgraph elimination (default is ON)
 e.g. Simplify arithmetic ops; merge ops with same value (like constants).
 
.tensorflow.RewriterConfig.Toggle common_subgraph_elimination = 24;

resumo público RewriterConfig.Toggle getConstantFolding ()

 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
 
.tensorflow.RewriterConfig.Toggle constant_folding = 3;

público abstrato int getConstantFoldingValue ()

 Fold constants (default is ON)
 Statically infer the value of tensors when possible, and materialize the
 result using constants.
 
.tensorflow.RewriterConfig.Toggle constant_folding = 3;

resumo público RewriterConfig.CpuLayout getCpuLayoutConversion ()

 CPU Conversion settings between NHCW and NCHW.
 
.tensorflow.RewriterConfig.CpuLayout cpu_layout_conversion = 50;

resumo público int getCpuLayoutConversionValue ()

 CPU Conversion settings between NHCW and NCHW.
 
.tensorflow.RewriterConfig.CpuLayout cpu_layout_conversion = 50;

resumo público RewriterConfig.CustomGraphOptimizer getCustomOptimizers (índice int)

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

resumo público int getCustomOptimizersCount ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

lista abstrata pública< RewriterConfig.CustomGraphOptimizer > getCustomOptimizersList ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

resumo público RewriterConfig.CustomGraphOptimizerOrBuilder getCustomOptimizersOrBuilder (índice int)

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

lista abstrata pública<? estende RewriterConfig.CustomGraphOptimizerOrBuilder > getCustomOptimizersOrBuilderList ()

 list of CustomGraphOptimizers to apply.
 
repeated .tensorflow.RewriterConfig.CustomGraphOptimizer custom_optimizers = 200;

resumo público RewriterConfig.Toggle getDebugStripper ()

 Strips debug-related nodes from the graph (off by default).
 
.tensorflow.RewriterConfig.Toggle debug_stripper = 11;

resumo público int getDebugStripperValue ()

 Strips debug-related nodes from the graph (off by default).
 
.tensorflow.RewriterConfig.Toggle debug_stripper = 11;

resumo público RewriterConfig.Toggle getDependencyOptimization ()

 Control dependency optimizations (default is ON).
 Remove redundant control dependencies, which may enable other optimization.
 
.tensorflow.RewriterConfig.Toggle dependency_optimization = 8;

resumo público int getDependencyOptimizationValue ()

 Control dependency optimizations (default is ON).
 Remove redundant control dependencies, which may enable other optimization.
 
.tensorflow.RewriterConfig.Toggle dependency_optimization = 8;

público abstrato booleano getDisableMetaOptimizer ()

 Disable the entire meta optimizer (off by default).
 
bool disable_meta_optimizer = 19;

público abstrato booleano getDisableModelPruning ()

 If true, don't remove unnecessary ops from the graph
 
bool disable_model_pruning = 2;

público abstrato booleano getExperimentalDisableCompressedTensorOptimization ()

 Disable optimizations that assume compressed tensors. Note that this flag
 is experimental and may be removed in the future.
 
bool experimental_disable_compressed_tensor_optimization = 26;

público abstrato booleano getFailOnOptimizerErrors ()

 If true, any optimization pass failing will cause the MetaOptimizer to
 stop with an error. By default - or when set to false, failing passes are
 skipped silently.
 
bool fail_on_optimizer_errors = 21;

resumo público RewriterConfig.Toggle getFunctionOptimization ()

 Function optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle function_optimization = 10;

público abstrato int getFunctionOptimizationValue ()

 Function optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle function_optimization = 10;

resumo público RewriterConfig.Toggle getImplementationSelector ()

 Enable the swap of kernel implementations based on the device placement
 (default is ON).
 
.tensorflow.RewriterConfig.Toggle implementation_selector = 22;

público abstrato int getImplementationSelectorValue ()

 Enable the swap of kernel implementations based on the device placement
 (default is ON).
 
.tensorflow.RewriterConfig.Toggle implementation_selector = 22;

resumo público VerifierConfig getInterOptimizerVerifierConfig ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

público abstrato VerifierConfigOrBuilder getInterOptimizerVerifierConfigOrBuilder ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

resumo público RewriterConfig.Toggle getLayoutOptimizer ()

 Optimize tensor layouts (default is ON)
 e.g. This will try to use NCHW layout on GPU which is faster.
 
.tensorflow.RewriterConfig.Toggle layout_optimizer = 1;

resumo público int getLayoutOptimizerValue ()

 Optimize tensor layouts (default is ON)
 e.g. This will try to use NCHW layout on GPU which is faster.
 
.tensorflow.RewriterConfig.Toggle layout_optimizer = 1;

resumo público RewriterConfig.Toggle getLoopOptimization ()

 Loop optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle loop_optimization = 9;

resumo público int getLoopOptimizationValue ()

 Loop optimizations (default is ON).
 
.tensorflow.RewriterConfig.Toggle loop_optimization = 9;

resumo público RewriterConfig.MemOptType getMemoryOptimization ()

 Configures memory optimization passes through the meta-optimizer. Has no
 effect on manually requested memory optimization passes in the optimizers
 field.
 
.tensorflow.RewriterConfig.MemOptType memory_optimization = 4;

resumo público int getMemoryOptimizationValue ()

 Configures memory optimization passes through the meta-optimizer. Has no
 effect on manually requested memory optimization passes in the optimizers
 field.
 
.tensorflow.RewriterConfig.MemOptType memory_optimization = 4;

cadeia abstrata pública getMemoryOptimizerTargetNodeNameScope ()

 A node name scope for node names which are valid outputs of recomputations.
 Inputs to nodes that match this scope may be recomputed (subject either to
 manual annotation of those input nodes or to manual annotation and
 heuristics depending on memory_optimization), but the nodes themselves will
 not be recomputed. This matches any sub-scopes as well, meaning the scope
 can appear not just as a top-level scope. For example, if the value is
 "gradients/", the default, it will match node name "gradients/foo",
 "foo/gradients/bar", but not "foo_gradients/"
 
string memory_optimizer_target_node_name_scope = 6;

resumo público com.google.protobuf.ByteString getMemoryOptimizerTargetNodeNameScopeBytes ()

 A node name scope for node names which are valid outputs of recomputations.
 Inputs to nodes that match this scope may be recomputed (subject either to
 manual annotation of those input nodes or to manual annotation and
 heuristics depending on memory_optimization), but the nodes themselves will
 not be recomputed. This matches any sub-scopes as well, meaning the scope
 can appear not just as a top-level scope. For example, if the value is
 "gradients/", the default, it will match node name "gradients/foo",
 "foo/gradients/bar", but not "foo_gradients/"
 
string memory_optimizer_target_node_name_scope = 6;

resumo público RewriterConfig.NumIterationsType getMetaOptimizerIterations ()

 Controls how many times we run the optimizers in meta optimizer (default
 is once).
 
.tensorflow.RewriterConfig.NumIterationsType meta_optimizer_iterations = 12;

público abstrato int getMetaOptimizerIterationsValue ()

 Controls how many times we run the optimizers in meta optimizer (default
 is once).
 
.tensorflow.RewriterConfig.NumIterationsType meta_optimizer_iterations = 12;

público abstrato longo getMetaOptimizerTimeoutMs ()

 Maximum number of milliseconds to spend optimizing a single graph before
 timing out. If equal to 0 the system picks a default (currently 5 minutes).
 If less than 0 the optimizer will never time out.
 
int64 meta_optimizer_timeout_ms = 20;

resumo público int getMinGraphNodes ()

 The minimum number of nodes in a graph to optimizer. For smaller graphs,
 optimization is skipped.
 0 means the system picks an appropriate number.
 < 0 means do not skip optimization.
 
int32 min_graph_nodes = 17;

string abstrata pública getOptimizers (índice int)

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

resumo público com.google.protobuf.ByteString getOptimizersBytes (índice int)

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

resumo público int getOptimizersCount ()

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

lista abstrata pública<String> getOptimizersList ()

 If non-empty, will use this as an alternative way to specify a list of
 optimizations to turn on and the order of the optimizations (replacing the
 meta-optimizer).
 Of the RewriterConfig options, only the AutoParallel configuration options
 (the auto_parallel field) apply to manually requested optimization passes
 ("autoparallel"). Memory optimization passes ("memory") invoked here are
 not configurable (in contrast to memory optimization passes through the
 meta-optimizer) and act only on manual op annotations.
 Custom optimizers (see custom_optimizers) that are not part of this
 schedule will be run after - in the order that they were specified.
 
repeated string optimizers = 100;

resumo público RewriterConfig.Toggle getPinToHostOptimization ()

 Force small ops onto the CPU (default is OFF).
 
.tensorflow.RewriterConfig.Toggle pin_to_host_optimization = 18;

resumo público int getPinToHostOptimizationValue ()

 Force small ops onto the CPU (default is OFF).
 
.tensorflow.RewriterConfig.Toggle pin_to_host_optimization = 18;

público abstrato VerifierConfig getPostOptimizationVerifierConfig ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

público abstrato VerifierConfigOrBuilder getPostOptimizationVerifierConfigOrBuilder ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

resumo público RewriterConfig.Toggle getRemapping ()

 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
 
.tensorflow.RewriterConfig.Toggle remapping = 14;

público abstrato int getRemappingValue ()

 Remapping (default is ON)
 Remap subgraphs onto more efficient implementations.
 
.tensorflow.RewriterConfig.Toggle remapping = 14;

resumo público RewriterConfig.Toggle getScopedAllocatorOptimization ()

 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
 
.tensorflow.RewriterConfig.Toggle scoped_allocator_optimization = 15;

público abstrato int getScopedAllocatorOptimizationValue ()

 Try to allocate some independent Op outputs contiguously in order to
 merge or eliminate downstream Ops (off by default).
 
.tensorflow.RewriterConfig.Toggle scoped_allocator_optimization = 15;

público abstrato ScopedAllocatorOptions getScopedAllocatorOpts ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

público abstrato ScopedAllocatorOptionsOrBuilder getScopedAllocatorOptsOrBuilder ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;

resumo público RewriterConfig.Toggle getShapeOptimization ()

 Shape optimizations (default is ON)
 Simplify computations made on shapes.
 
.tensorflow.RewriterConfig.Toggle shape_optimization = 13;

resumo público int getShapeOptimizationValue ()

 Shape optimizations (default is ON)
 Simplify computations made on shapes.
 
.tensorflow.RewriterConfig.Toggle shape_optimization = 13;

público abstrato booleano hasAutoParallel ()

 Configures AutoParallel optimization passes either through the
 meta-optimizer or when manually specified through the optimizers field.
 
.tensorflow.AutoParallelOptions auto_parallel = 5;

público abstrato booleano hasInterOptimizerVerifierConfig ()

 VerifierConfig specifying the verifiers to be run after every optimizer.
 
.tensorflow.VerifierConfig inter_optimizer_verifier_config = 300;

público abstrato booleano hasPostOptimizationVerifierConfig ()

 VerifierConfig specifying the verifiers to be run at the end, after all
 optimizers have run.
 
.tensorflow.VerifierConfig post_optimization_verifier_config = 301;

público abstrato booleano hasScopedAllocatorOpts ()

.tensorflow.ScopedAllocatorOptions scoped_allocator_opts = 16;