حساب خسارة تباعد Kullback-Leibler بين التسميات والتنبؤات.
loss = labels * log(labels / predictions)
الاستخدام المستقل:
Operand<TFloat32> labels =
tf.constant(new float[][] { {0.f, 1.f}, {0.f, 0.f} });
Operand<TFloat32> predictions =
tf.constant(new float[][] { {0.6f, 0.4f}, {0.4f, 0.6f} });
KLDivergence kld = new KLDivergence(tf);
Operand<TFloat32> result = kld.call(labels, predictions);
// produces 0.458
الاتصال مع وزن العينة:
Operand<TFloat32> sampleWeight = tf.constant(new float[] {0.8f, 0.2f});
Operand<TFloat32> result = kld.call(labels, predictions, sampleWeight);
// produces 0.366f
باستخدام نوع التخفيض SUM :
KLDivergence kld = new KLDivergence(tf, Reduction.SUM);
Operand<TFloat32> result = kld.call(labels, predictions);
// produces 0.916f
باستخدام نوع التخفيض NONE :
KLDivergence kld = new KLDivergence(tf, Reduction.NONE);
Operand<TFloat32> result = kld.call(labels, predictions);
// produces [0.916f, -3.08e-06f]
انظر أيضا
الحقول الموروثة
المقاولون العامون
KLDivergence (Ops tf) إنشاء خسارة تباعد Kullback Leibler باستخدام getSimpleName() كاسم للخسارة وتقليل الخسارة بمقدار REDUCTION_DEFAULT | |
KLDivergence (Ops tf، تقليل التخفيض ) إنشاء خسارة خسارة تباعد Kullback Leibler باستخدام getSimpleName() كاسم للخسارة | |
الأساليب العامة
| <T يمتد TNumber > المعامل <T> |
الطرق الموروثة
المقاولون العامون
KLDivergence العامة (Ops tf)
إنشاء خسارة تباعد Kullback Leibler باستخدام getSimpleName() كاسم للخسارة وتقليل الخسارة بمقدار REDUCTION_DEFAULT
حدود
| tf | عمليات TensorFlow |
|---|
تباعد KLD العام (Ops tf، تقليل التخفيض )
إنشاء خسارة خسارة تباعد Kullback Leibler باستخدام getSimpleName() كاسم للخسارة
حدود
| tf | عمليات TensorFlow |
|---|---|
| تخفيض | نوع التخفيض الذي سيتم تطبيقه على الخسارة. |
KLDivergence العام (Ops tf، اسم السلسلة، تقليل التخفيض )
يخلق خسارة تباعد كولباك ليبلر
حدود
| tf | عمليات TensorFlow |
|---|---|
| اسم | اسم الخسارة |
| تخفيض | نوع التخفيض الذي سيتم تطبيقه على الخسارة. |
الأساليب العامة
استدعاء المعامل العام <T> ( المعامل <؟ يمتد تسميات TNumber >، تنبؤات المعامل <T>، عينات المعامل <T>)
يولد المعامل الذي يحسب الخسارة.
حدود
| التسميات | قيم الحقيقة أو التسميات |
|---|---|
| التنبؤات | التوقعات |
| SampleWeights | تعمل أوزان العينات الاختيارية كمعامل للخسارة. إذا تم توفير العدد، فسيتم ببساطة قياس الخسارة بالقيمة المحددة. إذا كان SampleWeights عبارة عن موتر بالحجم [batch_size]، فسيتم إعادة قياس إجمالي الخسارة لكل عينة من الدُفعة بواسطة العنصر المقابل في ناقل SampleWeights. إذا كان شكل SampleWeights هو [batch_size, d0, .. dN-1] (أو يمكن بثه إلى هذا الشكل)، فسيتم قياس كل عنصر خسارة في التنبؤات بالقيمة المقابلة لـ SampleWeights. (ملاحظة حول dN-1: جميع دوال الخسارة تقلل بمقدار بُعد واحد، وعادة ما يكون المحور=-1.) |
المرتجعات
- الخسارة