Svd
تنظيم صفحاتك في مجموعات
يمكنك حفظ المحتوى وتصنيفه حسب إعداداتك المفضّلة.
يحسب التحلل الذاتي لمجموعة من المصفوفات المتجاورة ذاتيًا
(ملاحظة: يتم دعم المدخلات الحقيقية فقط).
يحسب القيم الذاتية والمتجهات الذاتية لمصفوفات M-by-N الأعمق في الموتر بحيث يكون الموتر[...,:,:] = u[..., :, :] * Diag(s[..., :] ) * تبديل (v[...,:,:]).
الثوابت
خيط | OP_NAME | اسم هذه العملية كما هو معروف بواسطة محرك TensorFlow الأساسي |
الطرق الموروثة
من فئة java.lang.Object منطقية | يساوي (كائن arg0) |
الدرجة النهائية<?> | الحصول على كلاس () |
كثافة العمليات | رمز التجزئة () |
الفراغ النهائي | إعلام () |
الفراغ النهائي | إعلام الكل () |
خيط | إلى سلسلة () |
الفراغ النهائي | انتظر (طويل arg0، int arg1) |
الفراغ النهائي | انتظر (طويل arg0) |
الفراغ النهائي | انتظر () |
الثوابت
السلسلة النهائية الثابتة العامة OP_NAME
اسم هذه العملية كما هو معروف بواسطة محرك TensorFlow الأساسي
القيمة الثابتة: "XlaSvd"
الأساليب العامة
إنشاء Svd <T> ثابت عام (نطاق النطاق ، المعامل <T> a، Long maxIter، Float epsilon، String PrecisionConfig)
طريقة المصنع لإنشاء فئة تغلف عملية Svd جديدة.
حدود
نِطَاق | النطاق الحالي |
---|
أ | موتر الإدخال. |
---|
maxIter | الحد الأقصى لعدد تحديثات المسح، أي الجزء المثلث السفلي بالكامل أو الجزء المثلث العلوي بناءً على المعلمة السفلية. من الناحية التجريبية، قيل أن هناك حاجة إلى عمليات مسح log(min (M, N)) تقريبًا في الممارسة العملية (المرجع: Golub & van Loan "Matrix Computation"). |
---|
إبسيلون | نسبة التسامح. |
---|
التكوين الدقيق | نموذج xla متسلسل::PrecisionConfig. |
---|
الإخراج العام <T> s ()
القيم المفردة يتم فرز القيم بترتيب عكسي من حيث الحجم، لذا فإن s[..., 0] هي القيمة الأكبر، وs[..., 1] هي ثاني أكبر قيمة، وما إلى ذلك.
إنّ محتوى هذه الصفحة مرخّص بموجب ترخيص Creative Commons Attribution 4.0 ما لم يُنصّ على خلاف ذلك، ونماذج الرموز مرخّصة بموجب ترخيص Apache 2.0. للاطّلاع على التفاصيل، يُرجى مراجعة سياسات موقع Google Developers. إنّ Java هي علامة تجارية مسجَّلة لشركة Oracle و/أو شركائها التابعين.
تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)
[null,null,["تاريخ التعديل الأخير: 2025-07-27 (حسب التوقيت العالمي المتفَّق عليه)"],[],[],null,["# Svd\n\npublic final class **Svd** \nComputes the eigen decomposition of a batch of self-adjoint matrices\n\n\n(Note: Only real inputs are supported).\n\n\nComputes the eigenvalues and eigenvectors of the innermost M-by-N matrices in\ntensor such that tensor\\[...,:,:\\] = u\\[..., :, :\\] \\* Diag(s\\[..., :\\]) \\* Transpose(v\\[...,:,:\\]).\n\n\u003cbr /\u003e\n\n\u003cbr /\u003e\n\n### Constants\n\n|--------|-----------------------------------------------------------------|---------------------------------------------------------|\n| String | [OP_NAME](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#OP_NAME) | The name of this op, as known by TensorFlow core engine |\n\n### Public Methods\n\n|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| static \\\u003cT extends [TType](/jvm/api_docs/java/org/tensorflow/types/family/TType)\\\u003e [Svd](/jvm/api_docs/java/org/tensorflow/op/xla/Svd)\\\u003cT\\\u003e | [create](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#create(org.tensorflow.op.Scope, org.tensorflow.Operand\u003cT\u003e, java.lang.Long, java.lang.Float, java.lang.String))([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e a, Long maxIter, Float epsilon, String precisionConfig) Factory method to create a class wrapping a new Svd operation. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [s](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#s())() Singular values. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [u](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#u())() Left singular vectors. |\n| [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e | [v](/jvm/api_docs/java/org/tensorflow/op/xla/Svd#v())() Right singular vectors. |\n\n### Inherited Methods\n\nFrom class [org.tensorflow.op.RawOp](/jvm/api_docs/java/org/tensorflow/op/RawOp) \n\n|----------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| final boolean | [equals](/jvm/api_docs/java/org/tensorflow/op/RawOp#equals(java.lang.Object))(Object obj) |\n| final int | [hashCode](/jvm/api_docs/java/org/tensorflow/op/RawOp#hashCode())() |\n| [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/RawOp#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n| final String | [toString](/jvm/api_docs/java/org/tensorflow/op/RawOp#toString())() |\n\nFrom class java.lang.Object \n\n|------------------|---------------------------|\n| boolean | equals(Object arg0) |\n| final Class\\\u003c?\\\u003e | getClass() |\n| int | hashCode() |\n| final void | notify() |\n| final void | notifyAll() |\n| String | toString() |\n| final void | wait(long arg0, int arg1) |\n| final void | wait(long arg0) |\n| final void | wait() |\n\nFrom interface [org.tensorflow.op.Op](/jvm/api_docs/java/org/tensorflow/op/Op) \n\n|-----------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|\n| abstract [ExecutionEnvironment](/jvm/api_docs/java/org/tensorflow/ExecutionEnvironment) | [env](/jvm/api_docs/java/org/tensorflow/op/Op#env())() Return the execution environment this op was created in. |\n| abstract [Operation](/jvm/api_docs/java/org/tensorflow/Operation) | [op](/jvm/api_docs/java/org/tensorflow/op/Op#op())() Return this unit of computation as a single [Operation](/jvm/api_docs/java/org/tensorflow/Operation). |\n\nConstants\n---------\n\n#### public static final String\n**OP_NAME**\n\nThe name of this op, as known by TensorFlow core engine \nConstant Value: \"XlaSvd\"\n\nPublic Methods\n--------------\n\n#### public static [Svd](/jvm/api_docs/java/org/tensorflow/op/xla/Svd)\\\u003cT\\\u003e\n**create**\n([Scope](/jvm/api_docs/java/org/tensorflow/op/Scope) scope, [Operand](/jvm/api_docs/java/org/tensorflow/Operand)\\\u003cT\\\u003e a, Long maxIter, Float epsilon, String precisionConfig)\n\nFactory method to create a class wrapping a new Svd operation. \n\n##### Parameters\n\n| scope | current scope |\n| a | the input tensor. |\n| maxIter | maximum number of sweep update, i.e., the whole lower triangular part or upper triangular part based on parameter lower. Heuristically, it has been argued that approximately log(min (M, N)) sweeps are needed in practice (Ref: Golub \\& van Loan \"Matrix Computation\"). |\n| epsilon | the tolerance ratio. |\n| precisionConfig | a serialized xla::PrecisionConfig proto. |\n|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|\n\n##### Returns\n\n- a new instance of Svd \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**s**\n()\n\nSingular values. The values are sorted in reverse order of magnitude, so\ns\\[..., 0\\] is the largest value, s\\[..., 1\\] is the second largest, etc. \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**u**\n()\n\nLeft singular vectors. \n\n#### public [Output](/jvm/api_docs/java/org/tensorflow/Output)\\\u003cT\\\u003e\n**v**\n()\n\nRight singular vectors."]]