GPUOptions.Experimental الطبقة النهائية العامة الثابتة
نوع Protobuf tensorflow.GPUOptions.Experimental
فئات متداخلة
فصل | GPUOptions.Experimental.Builder | نوع Protobuf tensorflow.GPUOptions.Experimental | |
فصل | GPUOptions.Experimental.VirtualDevices | Configuration for breaking down a visible GPU into multiple "virtual" devices. | |
واجهة | GPUOptions.Experimental.VirtualDevicesOrBuilder |
الثوابت
كثافة العمليات | COLLECTIVE_RING_ORDER_FIELD_NUMBER | |
كثافة العمليات | KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER | |
كثافة العمليات | KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER | |
كثافة العمليات | KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER | |
كثافة العمليات | NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER | |
كثافة العمليات | TIMESTAMPED_ALLOCATOR_FIELD_NUMBER | |
كثافة العمليات | USE_UNIFIED_MEMORY_FIELD_NUMBER | |
كثافة العمليات | VIRTUAL_DEVICES_FIELD_NUMBER |
الأساليب العامة
منطقية | يساوي (كائن كائن) |
خيط | الحصول علىCollectiveRingOrder () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
com.google.protobuf.ByteString | الحصول علىCollectiveRingOrderBytes () If non-empty, defines a good GPU ring order on a single worker based on device interconnect. |
خيارات GPU ثابتة.تجريبية | |
GPUOptions.التجريبية | |
النهائي الثابت com.google.protobuf.Descriptors.Descriptor | |
كثافة العمليات | getKernelTrackerMaxBytes () If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. |
كثافة العمليات | getKernelTrackerMaxInterval () Parameters for GPUKernelTracker. |
كثافة العمليات | getKernelTrackerMaxPending () If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. |
كثافة العمليات | getNumDevToDevCopyStreams () If > 1, the number of device-to-device copy streams to create for each GPUDevice. |
كثافة العمليات | |
منطقية | الحصول على TimestampedAllocator () If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use. |
النهائي com.google.protobuf.UnknownFieldSet | |
منطقية | الحصول علىUseUnifiedMemory () If true, uses CUDA unified memory for memory allocations. |
GPUOptions.Experimental.VirtualDevices | getVirtualDevices (فهرس كثافة العمليات) The multi virtual device settings. |
كثافة العمليات | الحصول على VirtualDevicesCount () The multi virtual device settings. |
القائمة< GPUOptions.Experimental.VirtualDevices > | قائمة الأجهزة الافتراضية () The multi virtual device settings. |
GPUOptions.Experimental.VirtualDevicesOrBuilder | getVirtualDevicesOrBuilder (فهرس كثافة العمليات) The multi virtual device settings. |
القائمة<؟ يمتد GPUOptions.Experimental.VirtualDevicesOrBuilder > | getVirtualDevicesOrBuilderList () The multi virtual device settings. |
كثافة العمليات | رمز التجزئة () |
منطقية نهائية | تمت التهيئة () |
GPUOptions.Experimental.Builder | newBuilder (نموذج GPUOptions. التجريبي ) |
GPUOptions.Experimental.Builder | منشئ جديد () |
GPUOptions.Experimental.Builder | |
خيارات GPU ثابتة.تجريبية | parseDelimitedFrom (إدخال InputStream) |
خيارات GPU ثابتة.تجريبية | parseDelimitedFrom (إدخال InputStream، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
خيارات GPU ثابتة.تجريبية | parseFrom (بيانات ByteBuffer) |
خيارات GPU ثابتة.تجريبية | parseFrom (com.google.protobuf.CodedInputStream input، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
خيارات GPU ثابتة.تجريبية | parseFrom (بيانات ByteBuffer، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
خيارات GPU ثابتة.تجريبية | parseFrom (com.google.protobuf.CodedInputStream الإدخال) |
خيارات GPU ثابتة.تجريبية | parseFrom (بيانات البايت[]، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
خيارات GPU ثابتة.تجريبية | parseFrom (بيانات com.google.protobuf.ByteString) |
خيارات GPU ثابتة.تجريبية | parseFrom (إدخال InputStream، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
خيارات GPU ثابتة.تجريبية | parseFrom (com.google.protobuf.ByteString data، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry) |
ثابت | محلل () |
GPUOptions.Experimental.Builder | إلى البناء () |
فارغ | writeTo (com.google.protobuf.CodedOutputStream الإخراج) |
الطرق الموروثة
الثوابت
العدد النهائي الثابت العام COLLECTIVE_RING_ORDER_FIELD_NUMBER
القيمة الثابتة: 4
العدد النهائي الثابت العام KERNEL_TRACKER_MAX_BYTES_FIELD_NUMBER
القيمة الثابتة: 8
العدد النهائي الثابت العام KERNEL_TRACKER_MAX_INTERVAL_FIELD_NUMBER
القيمة الثابتة: 7
العدد النهائي الثابت العام KERNEL_TRACKER_MAX_PENDING_FIELD_NUMBER
القيمة الثابتة: 9
العدد النهائي الثابت العام NUM_DEV_TO_DEV_COPY_STREAMS_FIELD_NUMBER
القيمة الثابتة: 3
العدد النهائي الثابت العام TIMESTAMPED_ALLOCATOR_FIELD_NUMBER
القيمة الثابتة: 5
العدد النهائي الثابت العام USE_UNIFIED_MEMORY_FIELD_NUMBER
القيمة الثابتة: 2
العدد النهائي الثابت العام VIRTUAL_DEVICES_FIELD_NUMBER
القيمة الثابتة: 1
الأساليب العامة
القيمة المنطقية العامة تساوي (Object obj)
سلسلة عامة getCollectiveRingOrder ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
com.google.protobuf.ByteString العامة getCollectiveRingOrderBytes ()
If non-empty, defines a good GPU ring order on a single worker based on device interconnect. This assumes that all workers have the same GPU topology. Specify as a comma-separated string, e.g. "3,2,1,0,7,6,5,4". This ring order is used by the RingReducer implementation of CollectiveReduce, and serves as an override to automatic ring order generation in OrderTaskDeviceMap() during CollectiveParam resolution.
string collective_ring_order = 4;
النهائي العام الثابت com.google.protobuf.Descriptors.Descriptor getDescriptor ()
int العام getKernelTrackerMaxBytes ()
If kernel_tracker_max_bytes = n > 0, then a tracking event is inserted after every series of kernels allocating a sum of memory >= n. If one kernel allocates b * n bytes, then one event will be inserted after it, but it will count as b against the pending limit.
int32 kernel_tracker_max_bytes = 8;
int public getKernelTrackerMaxInterval ()
Parameters for GPUKernelTracker. By default no kernel tracking is done. Note that timestamped_allocator is only effective if some tracking is specified. If kernel_tracker_max_interval = n > 0, then a tracking event is inserted after every n kernels without an event.
int32 kernel_tracker_max_interval = 7;
int العام getKernelTrackerMaxPending ()
If kernel_tracker_max_pending > 0 then no more than this many tracking events can be outstanding at a time. An attempt to launch an additional kernel will stall until an event completes.
int32 kernel_tracker_max_pending = 9;
int العام getNumDevToDevCopyStreams ()
If > 1, the number of device-to-device copy streams to create for each GPUDevice. Default value is 0, which is automatically converted to 1.
int32 num_dev_to_dev_copy_streams = 3;
عام الحصول على بارسيرفورتايب ()
int public getSerializedSize ()
getTimestampedAllocator () المنطقي العام
If true then extra work is done by GPUDevice and GPUBFCAllocator to keep track of when GPU memory is freed and when kernels actually complete so that we can know when a nominally free memory chunk is really not subject to pending use.
bool timestamped_allocator = 5;
النهائي العام com.google.protobuf.UnknownFieldSet getUnknownFields ()
getUseUnifiedMemory () المنطقية العامة
If true, uses CUDA unified memory for memory allocations. If per_process_gpu_memory_fraction option is greater than 1.0, then unified memory is used regardless of the value for this field. See comments for per_process_gpu_memory_fraction field for more details and requirements of the unified memory. This option is useful to oversubscribe memory if multiple processes are sharing a single GPU while individually using less than 1.0 per process memory fraction.
bool use_unified_memory = 2;
GPUOptions.Experimental.VirtualDevices العامة getVirtualDevices (مؤشر int)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
int public getVirtualDevicesCount ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
القائمة العامة< GPUOptions.Experimental.VirtualDevices > getVirtualDevicesList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
GPUOptions.Experimental.VirtualDevicesOrBuilder العام getVirtualDevicesOrBuilder (فهرس كثافة العمليات)
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
القائمة العامة <؟ يمتد GPUOptions.Experimental.VirtualDevicesOrBuilder > getVirtualDevicesOrBuilderList ()
The multi virtual device settings. If empty (not set), it will create single virtual device on each visible GPU, according to the settings in "visible_device_list" above. Otherwise, the number of elements in the list must be the same as the number of visible GPUs (after "visible_device_list" filtering if it is set), and the string represented device names (e.g. /device:GPU:<id>) will refer to the virtual devices and have the <id> field assigned sequentially starting from 0, according to the order they appear in this list and the "memory_limit" list inside each element. For example, visible_device_list = "1,0" virtual_devices { memory_limit: 1GB memory_limit: 2GB } virtual_devices {} will create three virtual devices as: /device:GPU:0 -> visible GPU 1 with 1GB memory /device:GPU:1 -> visible GPU 1 with 2GB memory /device:GPU:2 -> visible GPU 0 with all available memory NOTE: 1. It's invalid to set both this and "per_process_gpu_memory_fraction" at the same time. 2. Currently this setting is per-process, not per-session. Using different settings in different sessions within same process will result in undefined behavior.
repeated .tensorflow.GPUOptions.Experimental.VirtualDevices virtual_devices = 1;
كود التجزئة الدولي العام ()
تمت تهيئة القيمة المنطقية النهائية العامة ()
GPUOptions العامة الثابتة. التحليل التجريبي DelimitedFrom (إدخال InputStream، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
رميات
IOEException |
---|
GPUOptions العامة الثابتة. التحليل التجريبي من (بيانات ByteBuffer)
رميات
InvalidProtocolBufferException |
---|
GPUOptions العامة الثابتة. التحليل التجريبي من (com.google.protobuf.CodedInputStream input, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
رميات
IOEException |
---|
GPUOptions العامة الثابتة. التحليل التجريبي من (بيانات ByteBuffer، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
رميات
InvalidProtocolBufferException |
---|
GPUOptions العامة الثابتة. التحليل التجريبي من (com.google.protobuf.CodedInputStream input)
رميات
IOEException |
---|
GPUOptions العامة الثابتة. التحليل التجريبي من (بيانات البايت []، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
رميات
InvalidProtocolBufferException |
---|
GPUOptions العامة الثابتة. التحليل التجريبي من (بيانات com.google.protobuf.ByteString)
رميات
InvalidProtocolBufferException |
---|
GPUOptions العامة الثابتة. التحليل التجريبي من (InputStream input، com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
رميات
IOEException |
---|
GPUOptions العامة الثابتة. التحليل التجريبي من (com.google.protobuf.ByteString data, com.google.protobuf.ExtensionRegistryLite ExtensionRegistry)
رميات
InvalidProtocolBufferException |
---|
ساكنة عامة محلل ()
الكتابة إلى الفراغ العام (إخراج com.google.protobuf.CodedOutputStream)
رميات
IOEException |
---|