This transformation passes a sliding window over this dataset. The window size
is window_size, the stride of the input elements is window_stride, and the
shift between consecutive windows is window_shift. If the remaining elements
cannot fill up the sliding window, this transformation will drop the final
smaller element. For example:
# NOTE: The following examples use `{ ... }` to represent the# contents of a dataset.a={[1],[2],[3],[4],[5],[6]}a.apply(sliding_window_batch(window_size=3))=={[[1],[2],[3]],[[2],[3],[4]],[[3],[4],[5]],[[4],[5],[6]]}a.apply(sliding_window_batch(window_size=3,window_shift=2))=={[[1],[2],[3]],[[3],[4],[5]]}a.apply(sliding_window_batch(window_size=3,window_stride=2))=={[[1],[3],[5]],[[2],[4],[6]]}
Args
window_size
A tf.int64 scalar tf.Tensor, representing the number of
elements in the sliding window. It must be positive.
stride
(Optional.) A tf.int64 scalar tf.Tensor, representing the
forward shift of the sliding window in each iteration. The default is 1.
It must be positive. Deprecated alias for window_shift.
window_shift
(Optional.) A tf.int64 scalar tf.Tensor, representing the
forward shift of the sliding window in each iteration. The default is 1.
It must be positive.
window_stride
(Optional.) A tf.int64 scalar tf.Tensor, representing the
stride of the input elements in the sliding window. The default is 1.
It must be positive.